Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(8): 21010-21024, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36264462

RESUMEN

This study evaluated the effects of environmental contamination caused by pasture intensification and pasture-sugarcane conversion on oxidative stress, biotransformation, esterase enzymes, and development of Scinax fuscovarious and Physalaemus nattereri. Tadpoles were exposed in mesocosms allocated in three treatments: (1) untreated extensive pasture (EP); (2) intensive-pasture conversion (IP) (2,4-D herbicide + fertilizers); and (3) pasture-sugarcane conversion (SC) (fipronil + 2,4-D + fertilizers). After 7 days of exposure, IP reduced catalase (CAT) and increased malondialdehyde (MDA) levels in P. nattereri, while this treatment decreased glucose-6-phosphate dehydrogenase (G6PDH) and CAT activities in S. fuscovarious. SC decreased CAT, G6PDH, and glutathione S-transferase (GST) activities in P. nattereri. In S. fuscovarius, SC reduced G6PDH, acetylcholinesterase (AChE), and carboxylesterase (CbE) activities. MDA was raised in both tadpole species exposed to SC, evidencing oxidative stress. Integrated biomarker responses showed higher scores in both species exposed to SC. Our results warn that management practices currently applied to sugarcane cultivation in Brazil can negatively impact the functional responses of amphibians at natural systems.


Asunto(s)
Saccharum , Contaminantes Químicos del Agua , Animales , Larva , Acetilcolinesterasa/metabolismo , Saccharum/metabolismo , Brasil , Fertilizantes , Catalasa/metabolismo , Anuros , Ácido 2,4-Diclorofenoxiacético/metabolismo , Glutatión Transferasa/metabolismo , Contaminantes Químicos del Agua/metabolismo
2.
Arch Environ Contam Toxicol ; 82(3): 330-340, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35138446

RESUMEN

Sugarcane crops are dependent on chemicals for maintaining plantations. Therefore, environmental consequences concern adjacent areas that can be affected by contaminants in common use, including pesticides and vinasse (i.e., a by-product from the ethanol industry). This study aimed to evaluate phytotoxicity through two plant bioassays with water from mesocosms contaminated with the herbicide 2,4-D (447.0 µg L-1), the insecticide fipronil (63.5 µg L-1), and sugarcane vinasse (1.3%). First, the germination test (4 d) with Eruca sativa L. assessed water samples collected three times after the contamination (2 h, 14 d, and 30 d), considering germination, shoot, and root growth. The results from this bioassay indicated higher phytotoxicity for 2,4-D as it fully inhibited the shoot and root growth even in low concentrations (0.2 µg L-1). However, no significant effect was reported for fipronil and vinasse. Also, the 2,4-D effects drastically decreased due to an expressive concentration reduction (99.4% after 30 d in mixture with vinasse). Second, the irrigation test with Phaseolus vulgaris L. and Zea mays L. considered shoot and root growth and biomass under 21 days after plants emergence. The herbicide 2,4-D inhibited the initial growth of tested species, especially the roots (up to 45% inhibition). Furthermore, sugarcane vinasse caused harmful effects on plant growth (up to 31% inhibition). Therefore, our data showed that these contaminants could inhibit plant germination and initial growth under our tested conditions. These evaluations can endorse risk assessments and water management in sugarcane crops surrounding areas.


Asunto(s)
Plaguicidas , Saccharum , Destilación , Etanol , Germinación/efectos de los fármacos , Plaguicidas/toxicidad , Semillas , Agua , Contaminantes Químicos del Agua/efectos adversos , Contaminación Química del Agua/efectos adversos
3.
Aquat Toxicol ; 245: 106117, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35176695

RESUMEN

When pesticides reach the aquatic environment, they can distribute in water and sediment, increasing the risks to benthic organisms, such as amphipods that play a key role in the aquatic food webs. Thus, the present study assessed the consequences of exposure to the insecticide fipronil and herbicide 2,4-D (alone and in mixture) on biochemical markers, feeding rates and the partial life-cycle of Hyalella meinerti. Three concentrations of fipronil (0.1, 0.3, and 0.7 µg L-1) and 2,4-D (19, 124, and 654 µg L-1), and six mixture combinations were assessed. The first experiment was carried out with males and females separately assessing the feeding rates, total carbohydrate content, and lipid profile. The second (partial life-cycle) lasted 49 days, and the survival, growth, and reproductive endpoints were assessed. Both pesticides and their mixture caused decreases in feeding rates, mainly in females. Females also suffered a change in the total carbohydrate content. In addition, there were changes in the percentage of triacylglycerol and phospholipids in males and females. Furthermore, alterations occurred in the percentual of triacylglycerol and phospholipids to both sexes. In the second experiment, fipronil and the mixtures caused decreases in the survival of H. meinerti over time. Exposure to 2,4-D, fipronil, and their mixture impaired the 28-day growth leading to biomass loss ranging from 17-23%, 54-60%, and 22-49%, respectively. The insecticide and mixture caused increases in time to sexual maturation of up to 10 and 6 days, respectively, and reduced the number of formed couples. Furthermore, fipronil decreased reproduction up to 36 times and no juveniles were produced in some mixture combinations. In addition, the pesticides on isolation decreased the juvenile size. Finally, exposure to both pesticides, alone or in a mixture, decreased the intrinsic rate of population growth. The results were observed in concentrations already quantified in water bodies, with risks for ecosystems functioning due to the importance of amphipods in aquatic ecosystems.


Asunto(s)
Anfípodos , Plaguicidas , Contaminantes Químicos del Agua , Ácido 2,4-Diclorofenoxiacético , Animales , Ecosistema , Femenino , Masculino , Plaguicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad
4.
Environ Sci Pollut Res Int ; 29(8): 11685-11698, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34546525

RESUMEN

The insecticide fipronil and the herbicide 2,4-D are the most applied pesticides in sugarcane crops leading to aquatic contamination. The whole-body bioconcentration of fipronil and 2,4-D, single and in mixture, was evaluated in Danio rerio after 96-h exposure. The activities of catalase (CAT) and glutathione S-transferase(GST) in whole body and in the gills and the acetylcholinesterase (AChE) in muscle were determined. The gill histopathology and the morphology of the pavement (PVC) and the mitochondria-rich(MRC) cells at gill surface were analyzed. Bioconcentration occurred after exposure to fipronil (2.69 L kg-1) and 2,4-D (1.73 L kg-1) single and in mixture of fipronil (3.10 L kg-1) and 2,4-D (1.27 L kg-1). Whole-body CAT activity was unchanged, and its activity decreased in the gills after exposure to fipronil and increased after exposure to 2,4-D and mixture. GST and AChE increased after single exposure to each pesticide and mixture of both. Fish exposed to mixture increased the MRC fractional area (MRCFA) which suggested possible ionic regulation disturbance and reduced the microridge of the PVC surface. Synergistic interactions occurred in the CAT activity and MRCFA after exposure to mixture of pesticides. The results indicate that the recommended application dose of fipronil and 2,4-D, single or in mixture, for sugarcane crops affects this fish species altering its homeostasis.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Ácido 2,4-Diclorofenoxiacético/toxicidad , Acetilcolinesterasa , Animales , Bioacumulación , Catalasa/metabolismo , Glutatión Transferasa/metabolismo , Pirazoles , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/metabolismo
5.
Arch Environ Contam Toxicol ; 82(1): 131-141, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34797381

RESUMEN

Pesticides can cause harmful effects to aquatic communities, even at concentrations below the threshold limit established as guidelines for the water bodies by environmental agencies. In this research, an input of the herbicide 2,4-dichlorophenoxyacetic acid (i.e., 2,4-D) was simulated under controlled conditions in a 500-m-long reach of a first-order tropical stream in Southeastern Brazil. Two water samplings at eight stations investigated the stream longitudinal contamination profile. The ecotoxicological effects were analyzed using Eruca sativa L. seed germination assays and the acute and chronic toxicity tests with the neotropical cladoceran Ceriodaphnia silvestrii. Physicochemical parameters of water quality were evaluated to characterize the study area and quantify 2,4-D concentrations along the stream to assess pesticide retention. The 2,4-D concentration was reduced by approximately 50% downstream in the samplings, indicating that the herbicide was retained along the stream. Moreover, C. silvestrii reproduction in long-term assays decreased approximately 50% in the stations with higher concentrations of 2,4-D than the laboratory control. After contamination, E. sativa L. showed a lower average root growth (1.0 cm), statistically different from the control (2.2 cm). On the other hand, similar growth values were obtained among the background and the most downstream stations. Our study highlighted the relevance of reviewing and updating herbicide guidelines and criteria to prevent possible ecological risks.


Asunto(s)
Cladóceros , Plaguicidas , Contaminantes Químicos del Agua , Ácido 2,4-Diclorofenoxiacético/toxicidad , Animales , Pruebas de Toxicidad Crónica , Contaminantes Químicos del Agua/toxicidad
6.
Environ Pollut ; 283: 117384, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34030066

RESUMEN

Conventional farming delivers a range of pesticides to aquatic ecosystems leading to implications for the indigenous species. Due to the multiple applications and persistence of molecules, organisms may be exposed for a prolonged period over multiple generations. The present study outlines a full life-cycle design over three generations of Chironomus sancticaroli exposed to the insecticide fipronil, the herbicide 2,4-D, and their mixtures. The experiment started with newly hatched larvae from the parental generation and lasted with the emerged adults from the second generation. Five nominal concentrations of fipronil and 2,4-D were tested, as well as six combinations of both pesticides. As additional responses, the total carbohydrates and the lipid classes were evaluated in the parental generation. The first and second generations were more susceptible to the tested compounds compared with the parental ones. Survival of larvae and pupae was decreased by both pesticides and their mixtures along with the generations. Only fipronil impaired the survival of emerged adults. Both pesticides (isolated and in the mixture) altered the emergence and the fraction of males and females. Moreover, the number of eggs produced, and their hatchability decreased. Only one combination of the pesticides increased the content of carbohydrates. Fipronil, 2,4-D, and its mixture altered the profile of the lipid classes. All mixture treatments and the three highest concentrations of fipronil extinguished the population of C. sancticaroli at the end of the first generation. In the remaining treatments with the insecticide, the population did not survive the second generation. Only three concentrations of 2,4-D and the control persisted until the end of the experiment. The results indicate that a prolonged exposition to these pesticides may disrupt the natural populations of exposed organisms with consequences to ecosystems' functioning, considering the importance of chironomids to aquatic and terrestrial environments.


Asunto(s)
Chironomidae , Contaminantes Químicos del Agua , Ácido 2,4-Diclorofenoxiacético/toxicidad , Animales , Ecosistema , Femenino , Larva , Masculino , Pirazoles , Contaminantes Químicos del Agua/toxicidad
7.
Environ Monit Assess ; 193(5): 262, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846871

RESUMEN

Emerging contaminants is a topic that has been in evidence, especially in the last decades. These compounds are pesticides, pharmaceuticals, and personal care products that are present in several locations, mainly in large urban centers. The aim of this work was to investigate the fate of seven compounds (atrazine, simazine, ametrine, tebuthiuron, 2,4-D, fipronil, and diclofenac) using leaching column experiments to evaluate accumulation and transfer in 5 different types of urban soils from Porto Alegre, Southern Brazil. Chemical analyses were carried out through liquid chromatography tandem mass spectrometry (LC-MS/MS). The results showed that the soil derived from quaternary sediments, with well-sorted sandy sediments, was the one in which the contaminants had higher mobility. This soil also has a pH above the average of the others in the city, a factor that may also be responsible for less retention of substances. Tebuthiuron is the substance with the greatest leaching potential overall. Column experiments are a relevant tool to understand the behavior of emerging contaminants in soils and implications on the population health.


Asunto(s)
Contaminantes del Suelo , Contaminantes Químicos del Agua , Brasil , Cromatografía Liquida , Monitoreo del Ambiente , Cromatografía de Gases y Espectrometría de Masas , Suelo , Contaminantes del Suelo/análisis , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis
8.
Environ Sci Pollut Res Int ; 28(28): 38308-38321, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33733415

RESUMEN

Conventional farming uses a large volume of pesticides that may reach aquatic ecosystems. This is also the case for the insecticide fipronil and the herbicide 2,4-D, which are widely used in many crops. This study aimed at evaluating the individual and mixture toxicity of these pesticides to the tropical amphipod Hyalella meinerti. To this end, acute toxicity tests (96 h) were conducted. Chronic bioassays (10 days) were also carried out, in which the body length and dry biomass were evaluated as endpoints. In addition, a complete factorial mixture chronic toxicity test was carried out. H. meinerti was sensitive to fipronil in the acute toxicity tests, with a LC50-96-h of 0.86 µg L-1 (95% CI 0.26-0.46), and no acute effects were observed after 2,4-D exposure even at the highest test concentration of 100 mg L-1. In the chronic toxicity tests, all tested concentrations of both pesticides decreased the growth of H. meinerti, in which losses on biomass reached 45% and 65% for 2,4-D and fipronil, respectively. The pesticide mixture indicated antagonism although it still significantly decreased the body growth. The results obtained indicate a high sensitivity of H. meinerti exposed to environmentally realistic concentrations, demonstrating that there are risks for the species in real field conditions.


Asunto(s)
Anfípodos , Insecticidas , Contaminantes Químicos del Agua , Ácido 2,4-Diclorofenoxiacético/toxicidad , Animales , Ecosistema , Insecticidas/toxicidad , Pirazoles , Contaminantes Químicos del Agua/toxicidad
9.
Ecotoxicol Environ Saf ; 208: 111622, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396142

RESUMEN

The continuous growth in global population since the beginning of the 20th century result in the necessity of food and energy provision favoring the intensive use of agricultural products such as pesticides. Although pesticides are important to prevent losses in the conventional chemically based agriculture, they frequently present side effects, which goes against agricultural production. The use of pesticides cause direct and indirect effects to soil organisms unbalancing essential soil processes (e.g. primary production, organic matter decomposition, nutrient cycling). Under tropical conditions, very little is known regarding the effects of pesticides to terrestrial organisms. Hence, the aim of the present study was to assess the ecotoxicological effects of the herbicide DMA® 806 BR (active ingredient: 2,4-D) and the insecticide Regent® 800 WG (active ingredient: fipronil), on terrestrial plant species (the dicot Raphanus sativus var. acanthioformis and the monocot Allium cepa), and soil invertebrates (the collembolan Folsomia candida and the enchytraeid Enchytraeus crypticus), using natural (NS) and artificial soils (TAS). For both pesticides, negative effects on non-target species were observed at concentrations lower than the doses recommended to prevent pests in sugarcane fields. For both soils, the dicot species was the most affected by the herbicide (R. sativus > A. cepa > F. candida > E. crypticus) and the collembolan species was the most affected by the insecticide (F. candida > E. crypticus = R. sativus = A. cepa). Although the order of the organisms' sensitivity for both pesticides was the same in both soils, results showed that the extent of the effects was soil dependent. Considering the ecologically relevant concentrations tested, and their severe effects to non-target organisms, it may be concluded that the use of fipronil and 2,4-D under recommended conditions may pose a risk to the terrestrial environment.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/toxicidad , Plaguicidas/toxicidad , Pirazoles/toxicidad , Saccharum/fisiología , Contaminantes del Suelo/análisis , Agricultura , Animales , Artrópodos/efectos de los fármacos , Artrópodos/fisiología , Ecotoxicología , Insecticidas/toxicidad , Oligoquetos/efectos de los fármacos , Oligoquetos/fisiología , Suelo/química
10.
Ecotoxicol Environ Saf ; 209: 111778, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33338803

RESUMEN

Increased use of pesticides in conventional agriculture implies potential risks to the environment. In aquatic ecosystems, benthic organisms may be exposed to pesticides via contaminated water and sediment, leading to several potential cascading effects on the food web. The aim of this study was to assess the functional implications of environmental realistic concentrations of the herbicide 2,4-D and the insecticide fipronil (alone and in combination) to the native tropical chironomid Chironomus sancticaroli. These two pesticides are widely applied to different crops and have frequently been detected (together) in surface water bodies in Brazil and elsewhere. Commercial products containing fipronil (Regent® 800WG) and 2,4-D (DMA® 806BR) were evaluated in 8-day toxicity tests for their effects on larval survival, growth (body length and biomass), head capsule width, development, and mentum deformities. Fipronil decreased the larval survival at the highest test concentration and the effective concentrations (EC) after eight days of exposure were: EC10 = 0.48 µg L-1 (0.395-0.565), EC20 = 1.06 µg L-1 (0.607-1.513), and EC50 = 3.70 µg L-1 (1.664-5.736). All sublethal test concentrations of fipronil decreased the larval growth, causing reductions in biomass up to 72%. The two highest test concentrations of fipronil decreased the head capsule width and after exposure to 3.7 µg fipronil L-1, only half of the larvae reached the fourth instar. The incidence of deformities was increased by fipronil in a concentration dependent manner with an increase ranging from 23% to 75%. The highest test concentration of 2.4-D (426 µg L-1) decreased the head capsule width, but larval development was unaffected at all concentrations evaluated. In the mixture tests, antagonism was observed at lower fipronil concentrations and synergism at higher fipronil concentrations for growth. The incidence of deformities rose with increasing fipronil concentrations. The results showed that environmental realistic concentrations of fipronil may have serious ecological implications for C. sancticaroli populations and that a mixture with the herbicide 2,4-D can have synergistic effects, potentiating the risks to the aquatic ecosystem.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/toxicidad , Chironomidae/efectos de los fármacos , Plaguicidas/toxicidad , Pirazoles/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Brasil , Chironomidae/crecimiento & desarrollo , Ecosistema , Insecticidas , Larva , Pruebas de Toxicidad , Contaminación del Agua
11.
Aquat Toxicol ; 231: 105712, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33340833

RESUMEN

Sugarcane crops management in Brazil includes the use of pesticides, as well as alternative organic fertilizers such as vinasse obtained from waste of the ethanol industry. In order to assess the effects of the environmental contamination generated by such sugarcane practices, this study was aimed to investigate the effects of the pesticides 2,4-Dichlorophenoxyacetic acid (2,4-D) and fipronil, as well as vinasse, on the survival, behavior, and reproduction of the native epibenthic macroinvertebrate Hyalella meinerti through in situ and laboratory experiments. In situ assays were conducted in mesocosms with six treatments, i.e. untreated control, 2,4-D, fipronil, and vinasse, the mixture of the two pesticides, and both pesticides mixed with vinasse. Survival, swimming behavior, and reproduction were evaluated over time post contamination, from 0-96 h (T1) and 7-14 days (T2) through in situ experiments and 30-44 days (T3) and 75-89 days (T4) post contamination by laboratory bioassays with mesocosm water. In the T1 period, survival of H. meinerti was registered only in controls and mesocosms treated with 2,4-D. In the T2 period, treatments containing fipronil and vinasse (isolated or in both mixture treatments) still caused 100 % of mortality. Survival was recorded only in 2,4-D and control treatments, whereas reproduction only occurred in the control. In the T3 period, no survival occurred to fipronil and both mixture treatments. Vinasse and 2,4-D decreased total reproduction in comparison to control. In the T4 period, amphipods survival was detected when exposed to fipronil and its mixture with 2,4-D. However, these same treatments decreased the amplexus rates and total reproduction, with synergism denoted for the pesticide mixture. The swimming activity of males, females, and couples was decreased in surviving organisms exposed to 2,4-D, fipronil, vinasse, and the mixture of pesticides along all experimental periods. Our study showed that the application of fipronil, 2,4-D, and vinasse isolated or mixed at realistic concentrations of actual sugarcane management practices may negatively impact functional responses of indigenous amphipods in natural aquatic systems.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/toxicidad , Anfípodos/fisiología , Exposición a Riesgos Ambientales , Pirazoles/toxicidad , Residuos , Anfípodos/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Brasil , Femenino , Masculino , Plaguicidas/análisis , Reproducción/efectos de los fármacos , Análisis de Supervivencia , Natación , Contaminantes Químicos del Agua/toxicidad , Calidad del Agua
12.
Chemosphere ; 263: 127972, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32822938

RESUMEN

Brazil is the largest producer of sugarcane, a crop largely dependent on chemical control for its maintenance. The insecticide fipronil and herbicide 2,4-D stand out among the most commonly used pesticides and, therefore, environmental consequences are a matter of concern. The present study aimed to investigate the toxicity mechanisms of Regent® 800 WG (a.i. fipronil) and DMA® 806 BR (a.i. 2,4-D) pesticides using forced and non-forced exposures through an integrative approach: firstly, to assess whether contamination by fipronil and 2,4-D can trigger the avoidance behavior of the fish Danio rerio (zebrafish) and Hyphessobrycon eques (serpae tetra or mato-grosso). Additionally, the effects on fish were analyzed considering the swimming behavior together with a biomarker of neurotoxicity, the activity of acetylcholinesterase (AChE). In avoidance tests with pesticide gradients, D. rerio avoided the highest concentrations of the two compounds and H. eques avoided only the highest concentration of 2,4-D. The swimming behavior (distance moved) was reduced and AChE was inhibited when D. rerio was exposed to fipronil. The 2,4-D affected the swimming (maximum speed) of H. eques, but AChE was not altered. Avoidance response seemed not to have been affected by possible effects of contaminants on swimming behavior and Ache activity. This study showed the importance of knowing the avoidance capacity, swimming behavior and neurotoxic effects of pesticides on fish in an integrated and realistic context of exposure in environments contaminated with pesticides and can be useful as ecologically relevant tools for ecological risk assessment.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/toxicidad , Conducta Animal/efectos de los fármacos , Pirazoles/química , Contaminantes Químicos del Agua/toxicidad , Acetilcolinesterasa/metabolismo , Animales , Brasil , Herbicidas/farmacología , Insecticidas/toxicidad , Plaguicidas/toxicidad , Natación , Transmisión Sináptica , Pez Cebra/metabolismo , Pez Cebra/fisiología
13.
Environ Monit Assess ; 192(12): 797, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247360

RESUMEN

Fipronil and 2,4-D are two main pesticides of sugarcane cultivation in Brazil. While pesticides have helped to improve food quality and quantity, the continuous increase in usage has raised concerns over the unintended negative environmental impacts they introduce. Mesocosm systems are used as surrogate ecosystems to evaluate the fate, transport, and transformation of pesticides. Controlled experimental manipulations on mesocosms simulate the effects of stressors on the environment, in which the studies to evaluate effects on the living organisms and assess pesticide dynamics produce more realistic data than those obtained in the laboratory. However, analytical methods that follow mesocosm studies shall be robust enough towards sensitive variations in analyte concentration and matrix-induced effects of suppression or enhancement of analytical response. An analytical method using solid-phase extraction (SPE) along with liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed for simultaneous determination of fipronil, 2,4-D, and their respective transformation products in aquatic systems. The method presented instrument quantification limits from 0.1 to 10.0 ng mL-1 and recovery values from 14 to 101%, with a maximum relative standard deviation (RSD) value of 12%. In the matrix effect assessment, the majority of matrix proportions showed a statistically relevant matrix effect for all compounds (p < 0.05). The method was further applied to over 500 different samples from mesocosm systems during controlled pesticide application and conversion of pastureland into sugarcane cropland. 2,4-D and fipronil mesocosm concentrations varied from 5 ng L-1 to 1.6 mg L-1 and 0.3 ng L-1 to 56 µg L-1, respectively.


Asunto(s)
Plaguicidas , Espectrometría de Masas en Tándem , Ácido 2,4-Diclorofenoxiacético , Brasil , Cromatografía Liquida , Ecosistema , Monitoreo del Ambiente , Límite de Detección , Plaguicidas/análisis , Pirazoles , Extracción en Fase Sólida
14.
Arch Environ Contam Toxicol ; 79(3): 298-309, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32860087

RESUMEN

Aquatic environments are constantly exposed to a cocktail of contaminants mainly due to human activities. As polluted ecosystems may simultaneously present other multiple natural stressors, the objective of the present study was to evaluate joint effect of stressors (natural and anthropogenic) on life history traits of the Neotropical cladoceran, Ceriodaphnia silvestrii. For this purpose, the effects of water conditioned with predator kairomones (fish) and environmental concentrations (sublethal) of two pesticides widely used in sugarcane monoculture in Brazil, the insecticide Regent® 800 WG (active ingredient-a.i. fipronil) and the herbicide DMA® 806 BR (a.i. 2,4-D) were evaluated using chronic toxicity testing, isolated and in mixture, for this cladoceran species. The environmental risks of pesticides for tropical freshwater biota were also estimated from the risk quotient MEC/PNEC. Among the characteristics of the life history of C. silvestrii evaluated after 8 days of exposure, compared with the mean value of control, the age of primiparous females was not affected by any evaluated treatment. However, species average survival decreased in the treatment of kairomones mixed with fipronil (FK) and in the treatment with a mixture of fipronil, 2,4-D, and kairomones (MFKD). The body length of maternal females was shorter than in the control after exposure in treatments with only kairomones (K) and FK. Fecundity of this cladoceran was reduced when exposed to FK and MFKD treatments, and the intrinsic rate of population increase significantly decreased for organisms exposed to treatment with fipronil (F) and to mixtures of fipronil and 2,4-D (MFD), MFDK, and FK. The results indicated that the combination of anthropogenic and natural stressors causes changes in C. silvestrii life history traits, which can contribute to the decline in populations, and our preliminary risk assessment results are a matter of concern regarding biota conservation.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/toxicidad , Cladóceros/efectos de los fármacos , Rasgos de la Historia de Vida , Feromonas/toxicidad , Pirazoles/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Brasil , Ecosistema , Femenino , Fertilidad/efectos de los fármacos , Peces/metabolismo , Agua Dulce/química , Pruebas de Toxicidad Crónica
15.
Ecotoxicol Environ Saf ; 206: 111180, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32861006

RESUMEN

The occurrence of pesticides and their mixtures in the environment can alter the ecological relationships between aquatic food chains. Since fipronil and 2,4-dichlorophenoxyacetic acid (2,4-D) are commonly found together in Brazilian water bodies, the present study aimed to investigate through an integrative approach the toxicity mechanisms of environmentally relevant concentrations of pesticides Regent® 800 WG (active ingredient - a.i. fipronil), DMA® 806 BR (a.i. 2,4-D) isolated and in mixtures on the green alga Raphidocelis subcapitata using multiple parameters: physiological (growth rate and chlorophyll a fluorescence), morphological (cell complexity and size), biochemical (composition of lipid classes) and related to the photosynthetic activity (variable fluorescence, the maximum quantum yield of the photosystem II - PSII - and the efficiency of the oxygen evolving complex - OEC - of PSII). The results indicated that fipronil significantly inhibited algal population growth, increased the chlorophyll a content (observed by fluorescence), cell size and lipid class content of triacylglycerol (TAG), free fatty acid (FFA) and acetone mobile polar lipid (AMPL) and, on the other hand, decreased variable fluorescence of algae. The tested concentrations of 2,4-D increased the chlorophyll a fluorescence, the cell size and the lipid classes TAG and FFA. The pesticide mixtures have had more effects on algae than isolated compounds, causing alterations in all parameters analyzed, including photosynthetic activity (maximum quantum yield and efficiency of the oxygen evolving complex of the PSII), in which no alterations were observed for the toxicity of the single pesticides. The results suggest that these analyses are important to evaluate pesticide toxicity mechanisms in ecological risk assessments of tropical regions. Thus, here we demonstrate the importance of using multiple parameters in ecotoxicological studies to obtain a better understanding of the toxicity of these compounds for phytoplankton.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/toxicidad , Chlorophyceae/fisiología , Pirazoles/toxicidad , Contaminantes Químicos del Agua/toxicidad , Brasil , Clorofila/metabolismo , Clorofila A , Ecotoxicología , Herbicidas/análisis , Plaguicidas/toxicidad , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema II , Fitoplancton/metabolismo
16.
Ecotoxicol Environ Saf ; 182: 109446, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31323523

RESUMEN

Increased use of sugarcane pesticides and their destination to non-target environments in Brazil has generated concerns related to the conservation of more vulnerable groups, such as amphibians. Besides the high skin permeability, tadpoles are constantly restricted to small and ephemeral ponds, where exposure to high concentrations of pesticides in agricultural areas is inevitable. This study evaluated chronic effects caused by sub-lethal concentrations of 2,4-dichlorophenoxyacetic acid herbicide on energy storage, development, respiration rates, swimming performance and avoidance behavior of bullfrog tadpoles (Lithobates catesbeianus). Firstly, we conducted acute toxicity test (96 h) to estipulate sub-lethal concentrations of 2,4-D and evaluate the sensitivity of three tadpoles' species to this herbicide. Results showed that Leptodactylus fuscus presented the lowest LC50 96 h, 28.81 mg/L, followed by Physalaemus nattereri (143.08 mg/L) and L. catesbeianus (574.52 mg/L). Chronic exposure to 2,4-D (125, 250 and 500 µg/L) delayed metamorphosis and inhibited the growth of tadpoles at concentrations of 125 µg/L. Effects on biochemical reserves showed that 2,4-D increased total hepatic lipids in tadpoles, although some individual lipid classes (e.g. free fatty acids and triglycerides) were reduced. Protein and carbohydrates contents were also impaired by 2,4-D, suggesting a disruption on energy metabolism of amphibians by the herbicide. In addition to biochemical changes, respiration rates and swimming speed were also decreased after chronic exposure to 2,4-D, and these responses appeared to be correlated with the changes detected in the basic energy content. Avoidance test indicated that tadpoles of L. catesbeinus avoided the presence of 2,4-D, however they were unable to detect increasing gradients of the contaminant. Our data showed that chronic exposure to 2,4-D impaired biochemical, physiological and behavioral aspects of tadpoles, which may compromise their health and make them more vulnerable to environmental stressors in natural systems.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/toxicidad , Reacción de Prevención/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Herbicidas/toxicidad , Larva/efectos de los fármacos , Frecuencia Respiratoria/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Brasil , Relación Dosis-Respuesta a Droga , Larva/metabolismo , Metamorfosis Biológica/efectos de los fármacos , Rana catesbeiana , Natación , Pruebas de Toxicidad Aguda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...