RESUMEN
Sepsis poses a significant challenge due its lethality, involving multiple organ dysfunction and impaired immune responses. Among several factors affecting sepsis, monocytes play a crucial role; however, their phenotype, proteomic profile, and function in septic shock remain unclear. Our aim was to fully characterize the subpopulations and proteomic profiles of monocytes seen in septic shock cases and discuss their possible impact on the disease. Peripheral blood monocyte subpopulations were phenotype based on CD14/CD16 expression by flow cytometry, and proteins were extracted from the monocytes of individuals with septic shock and healthy controls to identify changes in the global protein expression in these cells. Analysis using 2D-nanoUPLC-UDMSE identified 67 differentially expressed proteins in shock patients compared to controls, in which 44 were upregulated and 23 downregulated. These proteins are involved in monocyte reprogramming, immune dysfunction, severe hypotension, hypo-responsiveness to vasoconstrictors, vasodilation, endothelial dysfunction, vascular injury, and blood clotting, elucidating the disease severity and therapeutic challenges of septic shock. This study identified critical biological targets in monocytes that could serve as potential biomarkers for the diagnosis, prognosis, and treatment of septic shock, providing new insights into the pathophysiology of the disease.
Asunto(s)
Biomarcadores , Monocitos , Proteómica , Choque Séptico , Humanos , Choque Séptico/metabolismo , Choque Séptico/sangre , Proteómica/métodos , Monocitos/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Anciano , Proteoma/metabolismo , AdultoRESUMEN
The filamentous bacteriophage M13KO7 (M13) is the most used in phage display (PD) technology and, like other phages, has been applied in several areas of medicine, agriculture, and in the food industry. One of the advantages is that they can modulate the immune response in the presence of pathogenic microorganisms, such as bacteria and viruses. This study evaluated the use of phage M13 in the chicken embryos model. We inoculated 13-day-old chicken embryos with Salmonella Pullorum (SP) and then evaluated survival for the presence of phage M13 or E. coli ER2738 (ECR) infected with M13. We found that the ECR bacterium inhibits SP multiplication in 0.32 (M13-infected ECR) or 0.44 log UFC/mL (M13-uninfected ECR) and that the ECR-free phage M13 from the PD library can be used in chicken embryo models. This work provides the use of the chicken embryo as a model to study systemic infection and can be employed as an analysis tool for various peptides that M13 can express from PD selection. KEY POINTS: ⢠SP-infected chicken embryo can be a helpful model of systemic infection for different tests. ⢠Phage M13 does not lead to embryonic mortality or cause serious injury to embryos. ⢠Phage M13 from the PD library can be used in chicken embryo model tests.
Asunto(s)
Bacteriófago M13 , Escherichia coli , Animales , Embrión de Pollo , Escherichia coli/virología , Escherichia coli/genética , Bacteriófago M13/genética , Técnicas de Visualización de Superficie Celular/métodos , Salmonella , Pollos , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/microbiologíaRESUMEN
COVID-19, caused by the SARS-COV-2 virus, induces numerous immunological reactions linked to the severity of the clinical condition of those infected. The surface Spike protein (S protein) present in Sars-CoV-2 is responsible for the infection of host cells. This protein presents a high rate of mutations, which can increase virus transmissibility, infectivity, and immune evasion. Therefore, we propose to evaluate, using immunoinformatic techniques, the predicted epitopes for the S protein of seven variants of Sars-CoV-2. MHC class I and II epitopes were predicted and further assessed for their immunogenicity, interferon-gamma (IFN-γ) inducing capacity, and antigenicity. For B cells, linear and structural epitopes were predicted. For class I MHC epitopes, 40 epitopes were found for the clades of Wuhan, Clade 2, Clade 3, and 20AEU.1, Gamma, and Delta, in addition to 38 epitopes for Alpha and 44 for Omicron. For MHC II, there were differentially predicted epitopes for all variants and eight equally predicted epitopes. These were evaluated for differences in the MHC II alleles to which they would bind. Regarding B cell epitopes, 16 were found in the Wuhan variant, 14 in 22AEU.1 and in Clade 3, 15 in Clade 2, 11 in Alpha and Delta, 13 in Gamma, and 9 in Omicron. When compared, there was a reduction in the number of predicted epitopes concerning the Spike protein, mainly in the Delta and Omicron variants. These findings corroborate the need for updates seen today in bivalent mRNA vaccines against COVID-19 to promote a targeted immune response to the main circulating variant, Omicron, leading to more robust protection against this virus and avoiding cases of reinfection. When analyzing the specific epitopes for the RBD region of the spike protein, the Omicron variant did not present a B lymphocyte epitope from position 390, whereas the epitope at position 493 for MHC was predicted only for the Alpha, Gamma, and Omicron variants.
Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Humanos , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , COVID-19/inmunología , COVID-19/virología , COVID-19/prevención & control , Brasil , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/química , Epítopos/inmunología , Epítopos/química , Interferón gamma/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/genéticaRESUMEN
Since prostate cancer (PCa) relies on limited therapies, more effective alternatives are required. Essential oils (EOs) and their bioactive compounds are natural products that have many properties including anticancer activity. This review covers studies published between 2000 and 2023 and discusses the anti-prostate cancer mechanisms of the EOs from several plant species and their main bioactive compounds. It also provides a critical perspective regarding the challenges to be overcome until they reach the market. EOs from chamomile, cinnamon, Citrus species, turmeric, Cymbopogon species, ginger, lavender, Mentha species, rosemary, Salvia species, thyme and other species have been tested in different PCa cell lines and have shown excellent results, including the inhibition of cell growth and migration, the induction of apoptosis, modulation in the expression of apoptotic and anti-apoptotic genes and the suppression of angiogenesis. The most challenging aspects of EOs, which limit their clinical uses, are their highly lipophilic nature, physicochemical instability, photosensitivity, high volatility and composition variability. The processing of EO-based products in the pharmaceutical field may be an interesting alternative to circumvent EOs' limitations, resulting in several benefits in their further clinical use. Identifying their bioactive compounds, therapeutic effects and chemical structures could open new perspectives for innovative developments in the field. Moreover, this could be helpful in obtaining versatile chemical synthesis routes and/or biotechnological drug production strategies, providing an accurate, safe and sustainable source of these bioactive compounds, while looking at their use as gold-standard therapy in the close future.
RESUMEN
Asthma drug responses may differ due to inflammatory mechanisms triggered by the immune cells in the pulmonary microenvironment. Thus, asthma phenotyping based on the local inflammatory profile may aid in treatment definition and the identification of new therapeutic targets. Here, we investigated protein profiles of induced sputum and serum from asthma patients classified into eosinophilic, neutrophilic, mixed granulocytic, and paucigranulocytic asthma, according to inflammatory phenotypes. Proteomic analyses were performed using an ultra-performance liquid chromatography (ultra-HPLC) system coupled to the Q Exactive Hybrid Quadrupole Orbitrap Mass Spectrometer. Fifty-two (52) proteins showed significant differences in induced sputum among the groups, while only 12 were altered in patients' sera. Five proteins in the induced sputum were able to discriminate all phenotypic groups, while four proteins in the serum could differentiate all except the neutrophilic from the paucigranulocytic inflammatory pattern. This is the first report on comparative proteomics of inflammatory asthma phenotypes in both sputum and serum samples. We have identified a potential five-biomarker panel that may be able to discriminate all four inflammatory phenotypes in sputum. These findings not only provide insights into potential therapeutic targets but also emphasize the potential for personalized treatment approaches in asthma management.
Asunto(s)
Asma , Esputo , Humanos , Neutrófilos/metabolismo , Proteómica , Inflamación/metabolismo , Fenotipo , EosinófilosRESUMEN
The development of wound dressings from biomaterials has been the subject of research due to their unique structural and functional characteristics. Proteins from animal origin, such as collagen and chitosan, act as promising materials for applications in injuries and chronic wounds, functioning as a repairing agent. This study aims to evaluate in vitro effects of scaffolds with different formulations containing bioactive compounds such as collagen, chitosan, N-acetylcysteine (NAC) and ε-poly-lysine (ε-PL). We manufactured a scaffold made of a collagen hydrogel bioconjugated with chitosan by crosslinking and addition of NAC and ε-PL. Cell viability was verified by resazurin and live/dead assays and the ultrastructure of biomaterials was evaluated by SEM. Antimicrobial sensitivity was assessed by antibiogram. The healing potential of the biomaterial was evaluated in vivo, in a model of healing of excisional wounds in mice. On the 7th day after the injury, the wounds and surrounding skin were processed for evaluation of biochemical and histological parameters associated with the inflammatory process. The results showed great cell viability and increase in porosity after crosslinking while antimicrobial action was observed in scaffolds containing NAC and ε-PL. Chitosan scaffolds bioconjugated with NAC/ε-PL showed improvement in tissue healing, with reduced lesion size and reduced inflammation. It is concluded that scaffolds crosslinked with chitosan-NAC-ε-PL have the desirable characteristics for tissue repair at low cost and could be considered promising biomaterials in the practice of regenerative medicine.
Asunto(s)
Acetilcisteína , Antiinfecciosos , Quitosano , Animales , Ratones , Antiinfecciosos/farmacología , Materiales Biocompatibles/química , Quitosano/química , Colágeno/química , Andamios del Tejido/química , Cicatrización de Heridas , Polilisina/químicaRESUMEN
The early diagnosis of leprosy serves as an important tool to reduce the incidence of this disease in the world. Phage display (PD) technology can be used for mapping new antigens to the development of immunodiagnostic platforms. Our objective was to identify peptides that mimic Mycobacterium leprae proteins as serological markers using phage display technology. The phages were obtained in the biopanning using negative and positive serum from household contacts and leprosy patients, respectively. Then, the peptides were synthesized and validated in silico and in vitro for detection of IgG from patients and contacts. To characterize the native protein of M. leprae, scFv antibodies were selected against the synthetic peptides by PD. The scFv binding protein was obtained by immunocapture and confirmed using mass spectrometry. We selected two phase-fused peptides, MPML12 and MPML14, which mimic the HSP60 protein from M. leprae. The peptides MPML12 and MPML14 obtained 100% and 92.85% positivity in lepromatous patients. MPML12 and MPM14 detect IgG, especially in the multibacillary forms. The MPML12 and MPML14 peptides had positivity of 11.1% and 16.6% in household contacts, respectively. There was no cross-reaction in patient's samples with visceral leishmaniasis, tuberculosis and other mycobacteriosis for both peptides. Given these results and the easy obtainment of mimetic antigens, our peptides are promising markers for application in the diagnosis of leprosy, especially in endemic and hyperendemic regions.
RESUMEN
Status epilepticus (SE) is described as continuous and self-sustaining seizures, which triggers hippocampal neurodegeneration, inflammation, and gliosis. N-formyl peptide receptor (FPR) has been associated with inflammatory process. N-formyl-methionyl-leucyl-phenylalanine (fMLP) peptide plays an anti-inflammatory role, mediated by the activation of G-protein-coupled FPR. Here, we evaluated the influence of fMLP peptides on the behavior of limbic seizures, memory consolidation, and hippocampal neurodegeneration process. Male Wistar rats (Rattus norvegicus) received microinjections of pilocarpine in hippocampus (H-PILO, 1.2 mg/µL, 1 µL) followed by fMLP (1 mg/mL, 1 µL) or vehicle (VEH, saline 0.9%, 1 µL). During the 90 min of SE, epileptic seizures were analyzed according to the Racine's Scale. After 24 h of SE, memory impairment was assessed by the inhibitory avoidance test and the neurodegeneration process was evaluated in hippocampal areas. There was no change in latency and number of wet dog shake (WDS) after administration of fMLP. However, our results showed that the intrahippocampal infusion of fMLP reduced the severity of seizures, as well as the number of limbic seizures. In addition, fMLP infusion protected memory dysfunction followed by SE. Finally, the intrahippocampal administration of fMLP attenuated the process of neurodegeneration in both hippocampi. Taken together, our data suggest a new insight into the functional role of fMLP peptides, with important implications for their potential use as a therapeutic agent for the treatment of brain disorders, such as epilepsy. Schematic drawing on the neuroprotective and anticonvulsant role of fMLP during status epilepticus. Initially, a cannula was implanted in hippocampus and pilocarpine/saline was administered into the hippocampus followed by fMLP/saline (A-C). fMLP reduced seizure severity and neuronal death in the hippocampus, as well as protecting against memory deficit (D).
Asunto(s)
Epilepsia , Estado Epiléptico , Ratas , Masculino , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , N-Formilmetionina Leucil-Fenilalanina/farmacología , N-Formilmetionina Leucil-Fenilalanina/uso terapéutico , Pilocarpina/uso terapéutico , Ratas Wistar , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/complicaciones , Convulsiones/tratamiento farmacológico , Epilepsia/tratamiento farmacológico , Péptidos/uso terapéuticoRESUMEN
OBJECTIVE: The use of animals as experimental models has been proposed to improve the techniques applied in human reproduction clinics. This prospective and observational study evaluates the effects of the use of cumulus cells and collagen membrane on the maturation process of bovine oocytes. METHODS: Design and Setting: Bovine oocytes with or without cumulus cells were cultured in maturation medium for 24 hours in the conventional system (2D), central well plates and in the three-dimensional (3D) system. Intervention: The oocytes were positioned in the collagen membrane and matured for the same period. The morphological evaluation was carried out with the parameters of maturation. Main Outcome Measure: Presence or absence of the first polar corpuscle, which were observed and classified as germinal vesicle (GV), meiosis I (MI) and meiosis II (MII). RESULTS: The percentage of oocytes in GV was higher (p<0.05) in treatments without cumulus cells than those with cells. The rates of MII were higher (p<0.05) in the treatments with cumulus cells, independent of the culture system. In general, oocytes with presence of cumulus cells have approximately 1.7 times more chances (p<0.001) of reaching MII after MIV than those matured without cells. CONCLUSIONS: The presence of the cells in the cumulus is essential for the maturation process of bovine oocytes; the three-dimensional collagen membrane culture system is favorable for the maturation process of bovine oocytes.
RESUMEN
Zika virus (ZIKV) diagnosis is currently performed through an invasive, painful, and costly procedure using molecular biology. Consequently, the search for a non-invasive, more cost-effective, reagent-free, and sustainable method for ZIKV diagnosis is of great relevance. It is critical to prepare a global strategy for the next ZIKV outbreak given its devastating consequences, particularly in pregnant women. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy has been used to discriminate systemic diseases using saliva; however, the salivary diagnostic application in viral diseases is unknown. To test this hypothesis, we intradermally challenged interferon-gamma gene knockout C57/BL6 mice with ZIKV (50 µL,105 FFU, n = 7) or vehicle (50 µL, n = 8). Saliva samples were collected on day three (due to the peak of viremia) and the spleen was also harvested. Changes in the salivary spectral profile were analyzed by Student's t test (p < 0.05), multivariate analysis, and the diagnostic capacity by ROC curve. ZIKV infection was confirmed by real-time PCR of the spleen sample. The infrared spectroscopy coupled with univariate analysis suggested the vibrational mode at 1547 cm-1 as a potential candidate to discriminate ZIKV and control salivary samples. Three PCs explained 93.2% of the cumulative variance in PCA analysis and the spectrochemical analysis with LDA achieved an accuracy of 93.3%, with a specificity of 87.5% and sensitivity of 100%. The LDA-SVM analysis showed 100% discrimination between both classes. Our results suggest that ATR-FTIR applied to saliva might have high accuracy in ZIKV diagnosis with potential as a non-invasive and cost-effective diagnostic tool.
RESUMEN
BACKGROUND: Effective cancer treatment still challenges medicine since the strategies employed so far are not sufficiently safe and capable of specifically eliminating tumor cells. Prostate cancer (PCa) is a highly incident malignant neoplasm, and the outcome of patients, especially those with advanced castration-resistant PCa (CRPC), depends directly on the efficacy of the therapeutic agents, such as docetaxel (DOC). OBJECTIVES: This study investigated the synergistic potentiation of 4-nerolidylcatechol (4-NC) with DOC in inhibiting androgen-independent PCa cells. METHODS: The cytotoxic effect of 4-NC was evaluated against non-tumorigenic (RWPE-01) and PCa cell lines (LNCaP and PC-3), and the antiproliferative potential of 4-NC was assessed by flow cytometry and colony formation. The Chou-Talalay method was applied to detect the synergistic effect of 4-NC and DOC, and the mechanism of anticancer activities of this combination was investigated by analyzing players in epithelial-mesenchymal transition (EMT). RESULTS: 4-NC significantly reduced the viability of PC-3 cells in a dose-dependent manner, decreasing colony formation and proliferation. The combination of 4-NC and DOC was synergistic in the androgen-independent cells and allowed the reduction of DOC concentration, with increased cytotoxicity and induction of apoptosis when compared to compounds alone. Furthermore, when 4- NC was co-administered with DOC, higher expression levels of proteins associated with the epithelial phenotype were observed, controlling EMT in PC-3 cells. CONCLUSION: Collectively, these data demonstrated, for the first time, that the combination of 4-NC with reduced doses of DOC could be especially valuable in the suppression of oncogenic mechanisms of androgen-independent PCa cells.
Asunto(s)
Andrógenos , Neoplasias de la Próstata , Humanos , Masculino , Docetaxel/farmacología , Andrógenos/farmacología , Andrógenos/uso terapéutico , Taxoides/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Línea Celular Tumoral , Proliferación CelularRESUMEN
Bovine brucellosis is a disease that significantly impacts animal production and human health. Although many sensitive diagnostic tests are used, there is still no ideal fast serological test for all epidemiological situations. In this context, we developed peptides that mimic regions of antigenic proteins of Brucella abortus and can be used in serological diagnosis. RESULTS: From phage display technology, we randomly selected nine clones of phage displaying peptide binders to B. abortus. These clones were sequenced and translated. After molecular docking analysis, two peptides (Ba4 and Ba9) were selected, chemically synthesized, and verified for their potential diagnostic value. By enzyme-linked immunoassay (ELISA), Ba9 showed a sensitivity of up to 97.5% to detect antibodies circulating in animals with brucellosis. We incorporated the peptide Ba9 onto a bioelectrode (graphite modified with poly-3-hydroxyphenylacetic acid). Then, direct serum detection was demonstrated by differential pulse voltammetry, micrographs, and topographic analyses in addition to the average roughness coefficient (Ra) and the value of the mean squared deviation of the roughness (Rms). CONCLUSION: This work shows that the mimetic epitope of B. abortus can be useful for developing new platforms for diagnosing brucellosis. In addition, we propose a fast test based on an electrochemical sensor using graphite modified with poly-3-hydroxyphenylacetic acid.
Asunto(s)
Brucelosis , Enfermedades de los Bovinos , Grafito , Humanos , Animales , Bovinos , Brucella abortus , Epítopos , Simulación del Acoplamiento Molecular , Ensayo de Inmunoadsorción Enzimática/veterinaria , Brucelosis/veterinaria , Anticuerpos Antibacterianos , Enfermedades de los Bovinos/diagnósticoRESUMEN
The overexpression of HER2 in breast cancer (BC) can contribute to redox imbalance, which is related to damage and structural modification in many biomolecules. To the best of our knowledge, this is the first study that has investigated the infrared spectrum wavenumbers obtained by ATR-FTIR and their relationship with the levels of redox status markers such as reduced glutathione, superoxide dismutase (SOD), catalase, Ferric Reducing Antioxidant Power (FRAP), and protein carbonyl among women with HER2+ BC, HER2- BC, and benign breast disease (BBD). The study was conducted with 25 women, 17 of whom were diagnosed with BC (6 HER2+ and 11 HER2-) and 8 with BBD. Our results indicate HER2+ BC cases could be distinguished from HER2- BC and BBD cases by their serum's antioxidant capacity [HER2+ BC vs. HER2- BC (AUC = 0.818; specificity = 81.82%; sensitivity = 66.67%); HER2+ BC vs. BBD (AUC = 0.875; specificity = 75%; sensitivity = 83.33%)]. The changes in biochemical terms that occur in serum as a result of the scarcity of antioxidants are related to a peculiar fingerprint in the infrared spectrum obtained by ATR-FTIR. In the serum of women with BBD, the SOD enzyme level is the highest, and this characteristic allowed us to distinguish them from HER2- BC. Finally, data regarding the serological antioxidant capacity of FRAP and the infrared spectrum by ATR-FTIR will allow us to assess biochemical changes that occur before clinical signs, indicating whether changes in therapy or interventions are necessary.
RESUMEN
Limitations in the detection of cocirculating flaviviruses such as Dengue and Zika lead us to propose the use of aptameric capture of the viral RNA in combination with RT-PCR (APTA-RT-PCR). Aptamers were obtained via SELEX and next-generation sequencing, followed by colorimetric and fluorescent characterizations. An APTA-RT-PCR assay was developed, optimized, and tested against the viral RNAs in 108 serum samples. After selection, sequence APTAZC10 was designed as a bifunctional molecular beacon (APTAZC10-MB), exhibiting affinity for the viral targets. APTA-RT-PCR was able to detect Dengue and Zika RNA in 43% and 8% of samples, respectively. Our results indicate that APTAZC10-MB and APTA-RT-PCR will be useful to improve the detection of Dengue and Zika viruses in a fast molecular assay for the improvement of infectious disease surveillance.
Asunto(s)
Dengue , Infección por el Virus Zika , Virus Zika , Humanos , Virus Zika/genética , Infección por el Virus Zika/diagnóstico , Oligonucleótidos , ARN Viral/genética , Fenómenos Magnéticos , Dengue/diagnósticoRESUMEN
Background: Chlamydia trachomatis infection is a major public health problem and the most common sexually transmitted infection in the world. Although highly prevalent, 70% to 80% of cases are asymptomatic and undiagnosed. Purpose: To overcome some limitations in terms of rapid diagnosis, phage display technology was used to bioprospect peptide mimetics of C. trachomatis immunoreactive and immunogenic antigens to be selected for the production of synthetic peptides. Methods: Initially, IgG from 22 individuals with C. trachomatis and 30 negative controls was coupled to G protein magnetic beads. The phage display technique consisted of biopanning, genetic sequencing, bioinformatics analysis and phage ELISA. Results: Clones G1, H5, C6 and H7 were selected for testing with individual samples positive and negative for C. trachomatis. Reactions were statistically significant (p < 0.05), with a sensitivity of 90.91, a specificity of 54.55, and AUC values >0.8. One-dimensional analysis with C. trachomatis components indicated that the G1 clone aligned with cell wall-associated hydrolase domain-containing protein, the H5 clone aligned with glycerol-3-phosphate acyltransferase PlsX protein, the C6 clone aligned with a transposase and inactivated derivatives, and the H7 clone aligned with GTP-binding protein. Molecular modeling and three-dimensional analysis indicated the best fit of the four clones with a protein known as chlamydial protease/proteasome-like activity factor (CPAF), an important virulence factor of the bacterium. Conclusion: The peptides produced by phage display are related to the metabolic pathways of C. trachomatis, indicating that they can be used to understand the pathogenesis of the infection. Because of their high sensitivity and AUC values, the peptides present considerable potential for use in platforms for screening C. trachomatis infections.
RESUMEN
BACKGROUND: There is a growing search for therapeutic targets in the treatment of gout. The present study aimed to evaluate the analgesic and anti-inflammatory potential of angiotensin type 2 receptor (AT2R) antagonism in an acute gout attack mouse model. METHODS: Male wild-type (WT) C57BL/6 mice either with the AT2R antagonist, PD123319 (10 pmol/joint), or with vehicle injections, or AT2R KO mice, received intra-articular (IA) injection of monosodium urate (MSU) crystals (100 µg/joint), that induce the acute gout attack, and were tested for mechanical allodynia, thermal hyperalgesia, spontaneous nociception and ankle edema development at several times after the injections. To test an involvement of AT2R in joint pain, mice received an IA administration of angiotensin II (0.05-5 nmol/joint) with or without PD123319, and were also evaluated for pain and edema development. Ankle joint tissue samples from mice undergoing the above treatments were assessed for myeloperoxidase activity, IL-1ß release, mRNA expression analyses and nitrite/nitrate levels, 4 h after injections. RESULTS: AT2R antagonism has robust antinociceptive effects on mechanical allodynia (44% reduction) and spontaneous nociception (56%), as well as anti-inflammatory effects preventing edema formation (45%), reducing myeloperoxidase activity (54%) and IL-1ß levels (32%). Additionally, Agtr2tm1a mutant mice have largely reduced painful signs of gout. Angiotensin II administration causes pain and inflammation, which was prevented by AT2R antagonism, as observed in mechanical allodynia 4 h (100%), spontaneous nociception (46%), cold nociceptive response (54%), edema formation (83%), myeloperoxidase activity (48%), and IL-1ß levels (89%). PD123319 treatment also reduces NO concentrations (74%) and AT2R mRNA levels in comparison with MSU untreated mice. CONCLUSION: Our findings show that AT2R activation contributes to acute pain in experimental mouse models of gout. Therefore, the antagonism of AT2R may be a potential therapeutic option to manage gout arthritis.
Asunto(s)
Dolor Agudo , Artritis Gotosa , Gota , Ratones , Masculino , Animales , Ácido Úrico , Hiperalgesia/tratamiento farmacológico , Angiotensina II , Receptor de Angiotensina Tipo 2 , Peroxidasa , Ratones Endogámicos C57BL , Gota/tratamiento farmacológico , Gota/metabolismo , Artritis Gotosa/tratamiento farmacológico , Bloqueadores del Receptor Tipo 2 de Angiotensina II/farmacología , Antiinflamatorios/uso terapéutico , Edema/tratamiento farmacológico , Antioxidantes/uso terapéutico , Dolor Agudo/tratamiento farmacológico , ARN MensajeroRESUMEN
Introduction: Leprosy reactions, the main cause of neural damage, can occur up to 7 years after starting multidrug therapy. We aimed to approach the prognostic factors that may influence the leprosy reactions over the follow-up time. Methods: Retrospective cohort study, encompassing 10 years of data collection, composed of 390 patients, divided into 201 affected by reactions and 189 reaction-free individuals. Epidemiological, clinical, and laboratory variables were approached as prognostic factors associated with leprosy reactions. The association among variables was analyzed by a binomial test and survival curves were compared by the Kaplan-Meier and Cox proportional-hazards regression. Results: 51.5% (201/390) of patients were affected by leprosy reactions. These immunological events were associated with lepromatous leprosy (16.2%; 63/390; p < 0.0001) and multibacillary group (43%; 169/390; p < 0.0001). This study showed that survival curves for the prognostic factor anti-PGL-I, comparing positive and negative cases at diagnosis, differed in relation to the follow-up time (Log Rank: p = 0.0760; Breslow: p = 0.0090; Tarone-Ware: p = 0.0110). The median survival times (time at which 50% of patients were affected by leprosy reactions) were 5 and 9 months for those reactional cases with negative (26/51) and positive serology (75/150), respectively. The time-dependent covariates in the cox proportional-hazards regression showed anti-PGL-I as the main prognostic factor to predict leprosy reactions (hazard ratio=1.91; p = 0.0110) throughout the follow-up time. Conclusions: Finally, these findings demonstrated that anti-PGL-I serology at diagnosis is the most important prognostic factor for leprosy reactions after starting multidrug therapy, thus enabling prediction of this immunological event.
RESUMEN
Annona muricata Linn. is a common plant found in the warmest regions of South and Central America and its use in traditional medicine has been reported for the treatment of various illnesses. In the current study, we investigate the antioxidant and anti-inflammatory activities of crude extract and fractions from A. muricata L. leaves in isolated murine phagocytic immune cells as well as experimental LPS-induced acute lung injury (ALI). In a luminol-dependent chemiluminescence assay, we showed that ethyl acetate (EtOAc.f) and n-butanol (BuOH.f) fractions-both rich in polyphenols-reduced the generation of reactive oxygen species (ROS) by neutrophils stimulated with opsonized zymosan; similar results were found in culture of bone marrow-derived macrophages (BMDMs). By evaluating anti-inflammatory activity in BMDMs, EtOAc.f and BuOH.f reduced secretion of IL-6 and expression of the co-stimulatory molecule CD40. Furthermore, in LPS-induced ALI, oral administration of EtOAc.f reduced myeloperoxidase (MPO) activity in lung tissue. In addition, on a mechanism dependent on glutathione levels, the oxidative damage was also attenuated. These findings revealed direct antioxidant and anti-inflammatory activities of polyphenols-rich fractions of A. muricata L. leaves on neutrophils and macrophages. Moreover, the reduced oxidative damage and levels of inflammatory markers in experimental ALI suggest that these fractions might be explored for the development of new therapies for inflammatory conditions.
RESUMEN
Phage display (PD) is a tool for developing new molecules to control pathogens. Peptides selected by PD are commonly synthesised and tested, but the use of phage M13 displaying the selected peptides as a direct biding in the intestinal tract has not yet been tested. This study evaluated whether phage M13 can remain viable in the chicken gastrointestinal tract and whether it causes injury or humoral immune response. We inoculated phage M13 or E. coli ER2738 (ECR) infected with M13 into birds at different ages. We found the virus in faeces at 5 or 13 days after inoculation, just when it infected the ECR. The presence of phage M13 or ECR did not result in gut injuries and had no impacts on weight gain and bird health. Furthermore, the levels of IgY were similar in all treatments, which indicates that the virus can be used in chicken until 42 days without being recognised by the immune system. This work provides a scientific basis for the use of PD as a tool in numerous applications to control different pathogens.