Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(13): 6067-6072, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37350682

RESUMEN

We investigate the fundamental optical properties of single zinc-blende InP/ZnSe/ZnS nanocrystals (NCs) using frequency- and time-resolved magneto-photoluminescence spectroscopy. At liquid helium temperature, highly resolved spectral fingerprints are obtained and identified as the recombination lines of the three lowest states of the band-edge exciton fine structure. The evolutions of the photoluminescence spectra and decays under magnetic fields show evidence for a ground dark exciton level 0L with zero angular momentum projection along the NC main elongation axis. It lies 300 to 600 µeV below the ±1L bright exciton doublet, which is finely split by the NC shape anisotropy. These spectroscopic findings are well reproduced with a model of exciton fine structure accounting for shape anisotropy of the InP core. Our spectral fingerprints are extremely sensitive to the NC morphologies and unveil highly uniform shapes with prolate deviations of less than 3% from perfect sphericity.

2.
Nanoscale ; 15(3): 1230-1235, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36537868

RESUMEN

Analytic equation for energy dispersion of electronic states in lead chalcogenide nanosheets is derived within an effective mass model. Selection rules for interband optical transitions are analyzed and expressions for interband optical matrix elements are obtained. It is shown that the main effect of the lateral confinement in nanoplatelets can be accounted for in terms of the quantized in-plane wave vector.

4.
Small ; 17(13): e2006977, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33690965

RESUMEN

A low-temperature polarization-resolved magneto-photoluminescence experiment is performed on individual PbS/CdS core/shell quantum dots (QDs). The experiment enables a direct measurement of the exciton Landé g factor and the anisotropic zero-field splitting of the lowest emissive bright exciton triplet in PbS/CdS QDs. While anisotropic splittings of individual QDs distribute randomly in 104-325 µeV range, the exciton Landé g factors increase from 0.95 to 2.70 as the emission energy of the QD increases from 1.0 to 1.2 eV. The tight-binding calculations allow to rationalize these trends as a direct consequence of reducing a cubic symmetry of QD via addition/removal of a few (<70) atoms from the surfaces of the PbS core. Furthermore, it is observed that while right (σ  + ) and left (σ  - ) circularly polarized photoluminescence (PL) peaks split linearly with magnetic field as expected for Zeeman effect, the energy splitting between X and Y linearly polarized PL peaks remains nearly unchanged. The theoretical study reveals rich and complex magnetic field-induced interplay of bright triplet and dark exciton states explaining this puzzling behavior. These findings fill the missing gaps in the understanding of lead salt QDs and provide foundation for development of classical and quantum light sources operating at telecommunication wavelengths.

5.
Nano Lett ; 20(12): 8897-8902, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33170719

RESUMEN

We study the exciton fine structure in quantum dots of multivalley lead chalcogenides. We demonstrate that intervalley electron-hole exchange interaction, ignored in previous studies, dramatically modifies the exciton fine structure and leads to appearance of the ultrabright valley-symmetric spin-triplet exciton state dominating interband optical absorption. Valley mixing leads to brightening of other symmetry-allowed spin-triplet states which dominate low-temperature photoluminescence.

6.
ACS Nano ; 14(3): 3451-3460, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32053343

RESUMEN

Organic color-center quantum defects in semiconducting carbon nanotube hosts are rapidly emerging as promising candidates for solid-state quantum information technologies. However, it is unclear whether these defect color-centers could support the spin or pseudospin-dependent excitonic fine structure required for spin manipulation and readout. Here we conducted magneto-photoluminescence spectroscopy on individual organic color-centers and observed the emergence of fine structure states under an 8.5 T magnetic field applied parallel to the nanotube axis. One to five fine structure states emerge depending on the chirality of the nanotube host, nature of chemical functional group, and chemical binding configuration, presenting an exciting opportunity toward developing chemical control of magnetic brightening. We attribute these hidden excitonic fine structure states to field-induced mixing of singlet excitons trapped at sp3 defects and delocalized band-edge triplet excitons. These findings provide opportunities for using organic color-centers for spintronics, spin-based quantum computing, and quantum sensing.

7.
Nano Lett ; 19(12): 8519-8525, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31714793

RESUMEN

With a tunable size-dependent photoluminescence (PL) over a wide infrared wavelength range, lead chalcogenide quantum dots (QDs) have attracted significant scientific and technological interest. Nevertheless, the investigation of intrinsic exciton photophysics at the single-QD level has remained a challenge. Herein, we present a comprehensive study of PL properties for the individual core/shell PbS/CdS QDs emissive near 1.0 eV. In contrast to the sub-meV spectral line widths observed for II/VI QDs, PbS/CdS QDs are predicted to possess broad homogeneous line widths. Performing spectroscopy at cryogenic (4 K) temperatures, we provide direct evidence confirming theoretical predictions, showing that intrinsic line widths for PbS/CdS QDs are in the range of 8-25 meV, with an average of 16.4 meV. In addition, low-temperature, single-QD spectroscopy reveals a broad low-energy side emission attributable to optical as well as localized acoustic phonon-assisted transitions. By tracking single QDs from 4 to 250 K, we were able to probe temperature-dependent evolutions of emission energy, line width, and line shape. Finally, polarization-resolved PL imaging showed that PbS/CdS QDs are characterized by a 3D emission dipole, in contrast with the 2D dipole observed for CdSe QDs.

8.
Nanoscale ; 10(48): 22861-22870, 2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30488930

RESUMEN

Colloidal semiconductor nanoplatelets with a similar electronic structure as quantum wells have recently emerged as exciting materials for optoelectronic applications. Here we investigate how morphology affects important photoluminescence properties of single CdSe and core/shell CdSe/CdZnS nanoplatelets. By analyzing photoluminescence intensity-lifetime correlation and second-order photon correlation results, we demonstrate that, irrespective of the morphology, Auger recombination plays only a minor role in dictating the blinking behavior of the nanoplatelets. We find that a rough shell induces additional nonradiative channels presumably related to defects or traps of an imperfect shell. Furthermore, polarization-resolved spectroscopy analysis reveals exciton fine-structure splitting of the order of several tens of meV in rough-shell nanoplatelets at room temperature, which is attributed to exciton localization and is substantiated by theoretical calculations taking into account the nanoplatelet shape and electron-hole exchange interaction.

9.
ACS Nano ; 8(11): 11651-6, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25329623

RESUMEN

We use nominally spheroidal CdSe nanocrystals with a zinc blende crystal structure to study how shape perturbations lift the energy degeneracies of the band-edge exciton. Nanocrystals with a low degree of symmetry exhibit splitting of both upper and lower bright state degeneracies due to valence band mixing combined with the isotropic exchange interaction, allowing active control of the level splitting with a magnetic field. Asymmetry-induced splitting of the bright states is used to reveal the entire 8-state band-edge fine structure, enabling complete comparison with band-edge exciton models.

10.
Nano Lett ; 14(3): 1590-5, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24564233

RESUMEN

It is demonstrated that the frequency of the extensional vibrational mode of a nanorod made of an elastically anisotropic crystalline material deviates widely from the predictions of the theories based on the analysis of the long-wavelength limit. The dispersion relation for the fundamental extensional mode of a gold rod grown in the [100] direction is calculated and found to be in excellent agreement with experimental data obtained from the transient optical absorption measurements on gold nanorods. This explains an anomaly in the elastic properties of nanorods which was previously attributed to a 26% decrease in Young's modulus for nanorods compared to its bulk value. The developed approach allows one to investigate the role of the crystal structure anisotropy for acoustic phonons in nanorods and nanowires made of any metal or semiconductor material having cubic crystal structure.

11.
Phys Rev Lett ; 95(19): 196401, 2005 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-16384000

RESUMEN

We observe ultrafast 1P-to-1S intraband relaxation in PbSe and CdSe nanocrystals (NCs) that have distinct energy spectra. While ultrafast dynamics in CdSe NCs has typically been interpreted in terms of electron-hole energy transfer, this mechanism is not active in PbSe NCs because of sparse densities of states in the conduction and valence bands. Our observations of temperature activation and confinement-enhanced relaxation in PbSe NCs can be explained by efficient multiphonon emission triggered by nonadiabatic electron-phonon interactions and are indicative of large, size-dependent, intraband Huang-Rhys parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...