Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Beilstein J Nanotechnol ; 15: 854-866, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015425

RESUMEN

Quantitative structure-activity relationship (QSAR) models are routinely used to predict the properties and biological activity of chemicals to direct synthetic advances, perform massive screenings, and even to register new substances according to international regulations. Currently, nanoscale QSAR (nano-QSAR) models, adapting this methodology to predict the intrinsic features of nanomaterials (NMs) and quantitatively assess their risks, are blooming. One of the challenges is the characterization of the NMs. This cannot be done with a simple SMILES representation, as for organic molecules, because their chemical structure is complex, including several layers and many inorganic materials, and their size and geometry are key features. In this review, we survey the literature for existing predictive models for NMs and discuss the variety of calculated and experimental features used to define and describe NMs. In the light of this research, we propose a classification of the descriptors including those that directly describe a component of the nanoform (core, surface, or structure) and also experimental features (related to the nanomaterial's behavior, preparation, or test conditions) that indirectly reflect its structure.

2.
Int J Mol Sci ; 25(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38891933

RESUMEN

The role of the gut microbiota and its interplay with host metabolic health, particularly in the context of type 2 diabetes mellitus (T2DM) management, is garnering increasing attention. Dipeptidyl peptidase 4 (DPP4) inhibitors, commonly known as gliptins, constitute a class of drugs extensively used in T2DM treatment. However, their potential interactions with gut microbiota remain poorly understood. In this study, we employed computational methodologies to investigate the binding affinities of various gliptins to DPP4-like homologs produced by intestinal bacteria. The 3D structures of DPP4 homologs from gut microbiota species, including Segatella copri, Phocaeicola vulgatus, Bacteroides uniformis, Parabacteroides merdae, and Alistipes sp., were predicted using computational modeling techniques. Subsequently, molecular dynamics simulations were conducted for 200 ns to ensure the stability of the predicted structures. Stable structures were then utilized to predict the binding interactions with known gliptins through molecular docking algorithms. Our results revealed binding similarities of gliptins toward bacterial DPP4 homologs compared to human DPP4. Specifically, certain gliptins exhibited similar binding scores to bacterial DPP4 homologs as they did with human DPP4, suggesting a potential interaction of these drugs with gut microbiota. These findings could help in understanding the interplay between gliptins and gut microbiota DPP4 homologs, considering the intricate relationship between the host metabolism and microbial communities in the gut.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dipeptidil Peptidasa 4 , Inhibidores de la Dipeptidil-Peptidasa IV , Microbioma Gastrointestinal , Humanos , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dipeptidil Peptidasa 4/metabolismo , Dipeptidil Peptidasa 4/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica
3.
Toxicology ; 504: 153764, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38428665

RESUMEN

Hepatotoxicity poses a significant concern in drug design due to the potential liver damage that can be caused by new drugs. Among common manifestations of hepatotoxic damage is lipid accumulation in hepatic tissue, resulting in liver steatosis or phospholipidosis. Carboxylic derivatives are prone to interfere with fatty acid metabolism and cause lipid accumulation in hepatocytes. This study investigates the toxic behaviour of 24 structurally related carboxylic acids in hepatocytes, specifically their ability to cause accumulation of fatty acids and phospholipids. Using high-content screening (HCS) assays, we identified two distinct lipid accumulation patterns. Subsequently, we developed structure-activity relationship (SAR) and quantitative structure-activity relationship (QSAR) models to determine relevant molecular substructures and descriptors contributing to these adverse effects. Additionally, we calculated physicochemical properties associated with lipid accumulation in hepatocytes and examined their correlation with our chemical structure characteristics. To assess the applicability of our findings to a wide range of chemical compounds, we employed two external datasets to evaluate the distribution of our QSAR descriptors. Our study highlights the significance of subtle molecular structural variations in triggering hepatotoxicity, such as the presence of nitrogen or the specific arrangement of substitutions within the carbon chain. By employing our comprehensive approach, we pinpointed specific molecules and elucidated their mechanisms of toxicity, thus offering valuable insights to guide future toxicology investigations.


Asunto(s)
Ácidos Carboxílicos , Hepatocitos , Relación Estructura-Actividad Cuantitativa , Ácidos Carboxílicos/toxicidad , Ácidos Carboxílicos/química , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Fosfolípidos/metabolismo , Fosfolípidos/química , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Células Hep G2
4.
J Med Chem ; 66(18): 13086-13102, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37703077

RESUMEN

Following a rational design, a series of macrocyclic ("stapled") peptidomimetics of 10Panx1, the most established peptide inhibitor of Pannexin1 (Panx1) channels, were developed and synthesized. Two macrocyclic analogues SBL-PX1-42 and SBL-PX1-44 outperformed the linear native peptide. During in vitro adenosine triphosphate (ATP) release and Yo-Pro-1 uptake assays in a Panx1-expressing tumor cell line, both compounds were revealed to be promising bidirectional inhibitors of Panx1 channel function, able to induce a two-fold inhibition, as compared to the native 10Panx1 sequence. The introduction of triazole-based cross-links within the peptide backbones increased helical content and enhanced in vitro proteolytic stability in human plasma (>30-fold longer half-lives, compared to 10Panx1). In adhesion assays, a "double-stapled" peptide, SBL-PX1-206 inhibited ATP release from endothelial cells, thereby efficiently reducing THP-1 monocyte adhesion to a TNF-α-activated endothelial monolayer and making it a promising candidate for future in vivo investigations in animal models of cardiovascular inflammatory disease.


Asunto(s)
Enfermedades Cardiovasculares , Conexinas , Animales , Humanos , Conexinas/metabolismo , Células Endoteliales/metabolismo , Línea Celular Tumoral , Péptidos/farmacología , Péptidos/uso terapéutico , Adenosina Trifosfato/metabolismo
5.
Cancers (Basel) ; 15(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37568632

RESUMEN

The study presents 'G4-QuadScreen', a user-friendly computational tool for identifying MTDLs against G4s. Also, it offers a few hit MTDLs based on in silico and in vitro approaches. Multi-tasking QSAR models were developed using linear discriminant analysis and random forest machine learning techniques for predicting the responses of interest (G4 interaction, G4 stabilization, G4 selectivity, and cytotoxicity) considering the variations in the experimental conditions (e.g., G4 sequences, endpoints, cell lines, buffers, and assays). A virtual screening with G4-QuadScreen and molecular docking using YASARA (AutoDock-Vina) was performed. G4 activities were confirmed via FRET melting, FID, and cell viability assays. Validation metrics demonstrated the high discriminatory power and robustness of the models (the accuracy of all models is ~>90% for the training sets and ~>80% for the external sets). The experimental evaluations showed that ten screened MTDLs have the capacity to selectively stabilize multiple G4s. Three screened MTDLs induced a strong inhibitory effect on various human cancer cell lines. This pioneering computational study serves a tool to accelerate the search for new leads against G4s, reducing false positive outcomes in the early stages of drug discovery. The G4-QuadScreen tool is accessible on the ChemoPredictionSuite website.

6.
Toxins (Basel) ; 15(6)2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37368656

RESUMEN

Mycotoxins are secondary metabolites produced by certain filamentous fungi. They are common contaminants found in a wide variety of food matrices, thus representing a threat to public health, as they can be carcinogenic, mutagenic, or teratogenic, among other toxic effects. Several hundreds of mycotoxins have been reported, but only a few of them are regulated, due to the lack of data regarding their toxicity and mechanisms of action. Thus, a more comprehensive evaluation of the toxicity of mycotoxins found in foodstuffs is required. In silico toxicology approaches, such as Quantitative Structure-Activity Relationship (QSAR) models, can be used to rapidly assess chemical hazards by predicting different toxicological endpoints. In this work, for the first time, a comprehensive database containing 4360 mycotoxins classified in 170 categories was constructed. Then, specific robust QSAR models for the prediction of mutagenicity, genotoxicity, and carcinogenicity were generated, showing good accuracy, precision, sensitivity, and specificity. It must be highlighted that the developed QSAR models are compliant with the OECD regulatory criteria, and they can be used for regulatory purposes. Finally, all data were integrated into a web server that allows the exploration of the mycotoxin database and toxicity prediction. In conclusion, the developed tool is a valuable resource for scientists, industry, and regulatory agencies to screen the mutagenicity, genotoxicity, and carcinogenicity of non-regulated mycotoxins.


Asunto(s)
Mutágenos , Micotoxinas , Mutágenos/toxicidad , Pruebas de Mutagenicidad , Micotoxinas/toxicidad , Mutagénesis , Carcinógenos/toxicidad
7.
Bioorg Chem ; 138: 106612, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37210827

RESUMEN

Pannexin1 channels facilitate paracrine communication and are involved in a broad spectrum of diseases. Attempts to find appropriate pannexin1 channel inhibitors that showcase target-selective properties and in vivo applicability remain nonetheless scarce. However, a promising lead candidate, the ten amino acid long peptide mimetic 10Panx1 (H-Trp1-Arg2-Gln3-Ala4-Ala5-Phe6-Val7-Asp8-Ser9-Tyr10-OH), has shown potential as a pannexin1 channel inhibitor in both in vitro and in vivo studies. Nonetheless, structural optimization is critical for clinical use. One of the main hurdles to overcome along the optimization process consists of subduing the low biological stability (10Panx1 t1/2 = 2.27 ± 0.11 min). To tackle this issue, identification of important structural features within the decapeptide structure is warranted. For this reason, a structure-activity relationship study was performed to proteolytically stabilize the sequence. Through an Alanine scan, this study demonstrated that the side chains of Gln3 and Asp8 are crucial for 10Panx1's channel inhibitory capacity. Guided by plasma stability experiments, scissile amide bonds were identified and stabilized, while extracellular adenosine triphosphate release experiments, indicative of pannexin1 channel functionality, allowed to enhance the in vitro inhibitory capacity of 10Panx1.


Asunto(s)
Fragmentos de Péptidos , Péptidos , Secuencia de Aminoácidos , Péptidos/farmacología , Aminoácidos , Alanina
8.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35163573

RESUMEN

Inflammasomes are multiprotein complexes that represent critical elements of the inflammatory response. The dysregulation of the best-characterized complex, the NLRP3 inflammasome, has been linked to the pathogenesis of diseases such as multiple sclerosis, type 2 diabetes mellitus, Alzheimer's disease, and cancer. While there exist molecular inhibitors specific for the various components of inflammasome complexes, no currently reported inhibitors specifically target NLRP3PYD homo-oligomerization. In the present study, we describe the identification of QM380 and QM381 as NLRP3PYD homo-oligomerization inhibitors after screening small molecules from the MyriaScreen library using a split-luciferase complementation assay. Our results demonstrate that these NLRP3PYD inhibitors interfere with ASC speck formation, inhibit pro-inflammatory cytokine IL1-ß release, and decrease pyroptotic cell death. We employed spectroscopic techniques and computational docking analyses with QM380 and QM381 and the PYD domain to confirm the experimental results and predict possible mechanisms underlying the inhibition of NLRP3PYD homo-interactions.


Asunto(s)
Antiinflamatorios , Proteína con Dominio Pirina 3 de la Familia NLR , Multimerización de Proteína/efectos de los fármacos , Piroptosis/efectos de los fármacos , Antiinflamatorios/química , Antiinflamatorios/farmacología , Células HEK293 , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/química , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
9.
Mol Divers ; 25(3): 1425-1438, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34258685

RESUMEN

Scientific and consumer interest in healthy foods (also known as functional foods), nutraceuticals and cosmeceuticals has increased in the recent years, leading to an increased presence of these products in the market. However, the regulations across different countries that define the type of claims that may be made, and the degree of evidence required to support these claims, are rather inconsistent. Moreover, there is also controversy on the effectiveness and biological mode of action of many of these products, which should undergo an exhaustive approval process to guarantee the consumer rights. Computational approaches constitute invaluable tools to facilitate the discovery of bioactive molecules and provide biological plausibility on the mode of action of these products. Indeed, methodologies like QSAR, docking or molecular dynamics have been used in drug discovery protocols for decades and can now aid in the discovery of bioactive food components. Thanks to these approaches, it is possible to search for new functions in food constituents, which may be part of our daily diet, and help to prevent disorders like diabetes, hypercholesterolemia or obesity. In the present manuscript, computational studies applied to this field are reviewed to illustrate the potential of these approaches to guide the first screening steps and the mechanistic studies of nutraceutical, cosmeceutical and functional foods.


Asunto(s)
Quimioinformática/métodos , Cosmecéuticos/química , Suplementos Dietéticos/análisis , Alimentos Funcionales/análisis , Modelos Moleculares , Relación Estructura-Actividad Cuantitativa , Algoritmos , Cosmecéuticos/farmacología , Bases de Datos de Compuestos Químicos , Humanos , Aprendizaje Automático , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
10.
Toxicology ; 458: 152846, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34216698

RESUMEN

The 3Rs concept, calling for replacement, reduction and refinement of animal experimentation, is receiving increasing attention around the world, and has found its way to legislation, in particular in the European Union. This is aligned by continuing high-level efforts of the European Commission to support development and implementation of 3Rs methods. In this respect, the European project called "ONTOX: ontology-driven and artificial intelligence-based repeated dose toxicity testing of chemicals for next generation risk assessment" was recently initiated with the goal to provide a functional and sustainable solution for advancing human risk assessment of chemicals without the use of animals in line with the principles of 21st century toxicity testing and next generation risk assessment. ONTOX will deliver a generic strategy to create new approach methodologies (NAMs) in order to predict systemic repeated dose toxicity effects that, upon combination with tailored exposure assessment, will enable human risk assessment. For proof-of-concept purposes, focus is put on NAMs addressing adversities in the liver, kidneys and developing brain induced by a variety of chemicals. The NAMs each consist of a computational system based on artificial intelligence and are fed by biological, toxicological, chemical and kinetic data. Data are consecutively integrated in physiological maps, quantitative adverse outcome pathway networks and ontology frameworks. Supported by artificial intelligence, data gaps are identified and are filled by targeted in vitro and in silico testing. ONTOX is anticipated to have a deep and long-lasting impact at many levels, in particular by consolidating Europe's world-leading position regarding the development, exploitation, regulation and application of animal-free methods for human risk assessment of chemicals.


Asunto(s)
Inteligencia Artificial , Ontología de Genes , Pruebas de Toxicidad , Alternativas a las Pruebas en Animales , Animales , Simulación por Computador , Unión Europea , Humanos , Técnicas In Vitro , Medición de Riesgo
11.
Environ Toxicol Pharmacol ; 87: 103688, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34119701

RESUMEN

Multiple substances are considered endocrine disrupting chemicals (EDCs). However, there is a significant gap in the early prioritization of EDC's effects. In this work, in silico and in vitro methods were used to model estrogenicity. Two Quantitative Structure-Activity Relationship (QSAR) models based on Logistic Regression and REPTree algorithms were built using a large and diverse database of estrogen receptor (ESR) agonism. A 10-fold external validation demonstrated their robustness and predictive capacity. Mechanistic interpretations of the molecular descriptors (C-026, nArOH,PW5, B06[Br-Br]) used for modelling suggested that the heteroatomic fragments, aromatic hydroxyls, and bromines, and the relative bond accessibility areas of molecules, are structural determinants in estrogenicity. As validation of the QSARs, ESR transactivity of thirteen persistent organic pollutants (POPs) and suspected EDCs was tested in vitro using the MMV-Luc cell line. A good correspondence between predictions and experimental bioassays demonstrated the value of the QSARs for prioritization of ESR agonist compounds.


Asunto(s)
Disruptores Endocrinos/toxicidad , Estrógenos/toxicidad , Receptores de Estrógenos/metabolismo , Algoritmos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Simulación por Computador , Disruptores Endocrinos/química , Disruptores Endocrinos/clasificación , Estrógenos/química , Estrógenos/clasificación , Humanos , Modelos Químicos , Relación Estructura-Actividad Cuantitativa , Receptores de Estrógenos/antagonistas & inhibidores
12.
Proteins ; 89(2): 174-184, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32881068

RESUMEN

We present a novel Java-based program denominated PeptiDesCalculator for computing peptide descriptors. These descriptors include: redefinitions of known protein parameters to suite the peptide domain, generalization schemes for the global descriptions of peptide characteristics, as well as empirical descriptors based on experimental evidence on peptide stability and interaction propensity. The PeptiDesCalculator software provides a user-friendly Graphical User Interface (GUI) and is parallelized to maximize the use of computational resources available in current work stations. The PeptiDesCalculator indices are employed in modeling 8 peptide bioactivity endpoints demonstrating satisfactory behavior. Moreover, we compare the performance of a support vector machine (SVM) classifier built using 15 PeptiDesCalculator indices with that of a recently reported deep neural network (DNN) antimicrobial activity classifier, demonstrating comparable test set performance notwithstanding the remarkably lower degree of freedom for the former. This software will facilitate the development of in silico models for the prediction of peptide properties.


Asunto(s)
Péptidos/química , Péptidos/farmacología , Programas Informáticos , Máquina de Vectores de Soporte , Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Antivirales/química , Antivirales/farmacología , Candida albicans/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , Hepatitis C/tratamiento farmacológico , Humanos , Listeria monocytogenes/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Redes Neurales de la Computación , Mapeo Peptídico , Péptidos/genética , Péptidos/metabolismo , Estabilidad Proteica , Pseudomonas aeruginosa/efectos de los fármacos
13.
Eur J Med Chem ; 207: 112777, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32971427

RESUMEN

The aryl hydrocarbon receptor (AhR) is a chemical sensor upregulating the transcription of responsive genes associated with endocrine homeostasis, oxidative balance and diverse metabolic, immunological and inflammatory processes, which have raised the pharmacological interest on its modulation. Herein, a novel set of 32 unsymmetrical triarylmethane (TAM) class of structures has been synthesized, characterized and their AhR transcriptional activity evaluated using a cell-based assay. Eight of the assayed TAM compounds (14, 15, 18, 19, 21, 22, 25, 28) exhibited AhR agonism but none of them showed antagonist effects. TAMs bearing benzotrifluoride, naphthol or heteroaromatic (indole, quinoline or thiophene) rings seem to be prone to AhR activation unlike phenyl substituted or benzotriazole derivatives. A molecular docking analysis with the AhR ligand binding domain (LBD) showed similarities in the binding mode and in the interactions of the most potent TAM identified 4-(pyridin-2-yl (thiophen-2-yl)methyl)phenol (22) compared to the endogenous AhR agonist 5,11-dihydroindolo[3,2-b]carbazole-12-carbaldehyde (FICZ). Finally, in silico predictions of physicochemical and biopharmaceutical properties for the most potent agonistic compounds were performed and these exhibited acceptable druglikeness and good ADME profiles. To our knowledge, this is the first study assessing the AhR modulatory effects of unsymmetrical TAM class of compounds.


Asunto(s)
Metano/química , Metano/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Células Hep G2 , Humanos , Metano/síntesis química , Metano/metabolismo , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida , Unión Proteica , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/química , Activación Transcripcional/efectos de los fármacos
14.
Curr Top Med Chem ; 20(18): 1628-1639, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32493189

RESUMEN

BACKGROUND: The Epidermal Growth Factor Receptor (EGFR) is a transmembrane protein that acts as a receptor of extracellular protein ligands of the epidermal growth factor (EGF/ErbB) family. It has been shown that EGFR is overexpressed by many tumours and correlates with poor prognosis. Therefore, EGFR can be considered as a very interesting therapeutic target for the treatment of a large variety of cancers such as lung, ovarian, endometrial, gastric, bladder and breast cancers, cervical adenocarcinoma, malignant melanoma and glioblastoma. METHODS: We have followed a structure-based virtual screening (SBVS) procedure with a library composed of several commercial collections of chemicals (615,462 compounds in total) and the 3D structure of EGFR obtained from the Protein Data Bank (PDB code: 1M17). The docking results from this campaign were then ranked according to the theoretical binding affinity of these molecules to EGFR, and compared with the binding affinity of erlotinib, a well-known EGFR inhibitor. A total of 23 top-rated commercial compounds displaying potential binding affinities similar or even better than erlotinib were selected for experimental evaluation. In vitro assays in different cell lines were performed. A preliminary test was carried out with a simple and standard quick cell proliferation assay kit, and six compounds showed significant activity when compared to positive control. Then, viability and cell proliferation of these compounds were further tested using a protocol based on propidium iodide (PI) and flow cytometry in HCT116, Caco-2 and H358 cell lines. RESULTS: The whole six compounds displayed good effects when compared with erlotinib at 30 µM. When reducing the concentration to 10µM, the activity of the 6 compounds depends on the cell line used: the six compounds showed inhibitory activity with HCT116, two compounds showed inhibition with Caco-2, and three compounds showed inhibitory effects with H358. At 2 µM, one compound showed inhibiting effects close to those from erlotinib. CONCLUSION: Therefore, these compounds could be considered as potential primary hits, acting as promising starting points to expand the therapeutic options against a wide range of cancers.


Asunto(s)
Antineoplásicos/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
15.
Chemosphere ; 256: 127068, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32447110

RESUMEN

The aryl hydrocarbon receptor (AhR) plays a key role in the regulation of gene expression in metabolic machinery and detoxification systems. In the recent years, this receptor has attracted interest as a therapeutic target for immunological, oncogenic and inflammatory conditions. In the present report, in silico and in vitro approaches were combined to study the activation of the AhR. To this end, a large database of chemical compounds with known AhR agonistic activity was employed to build 5 classifiers based on the Adaboost (AdB), Gradient Boosting (GB), Random Forest (RF), Multilayer Perceptron (MLP) and Support Vector Machine (SVM) algorithms, respectively. The built classifiers were examined, following a 10-fold external validation procedure, demonstrating adequate robustness and predictivity. These models were integrated into a majority vote based ensemble, subsequently used to screen an in-house library of compounds from which 40 compounds were selected for prospective in vitro experimental validation. The general correspondence between the ensemble predictions and the in vitro results suggests that the constructed ensemble may be useful in predicting the AhR agonistic activity, both in a toxicological and pharmacological context. A preliminary structure-activity analysis of the evaluated compounds revealed that all structures bearing a benzothiazole moiety induced AhR expression while diverse activity profiles were exhibited by phenolic derivatives.


Asunto(s)
Receptores de Hidrocarburo de Aril/metabolismo , Algoritmos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Benzotiazoles , Simulación por Computador , Humanos , Redes Neurales de la Computación , Fenoles , Estudios Prospectivos , Máquina de Vectores de Soporte
16.
FEBS Open Bio ; 9(7): 1194-1203, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31033240

RESUMEN

The expense and time required for in vivo reproductive and developmental toxicity studies have driven the development of in vitro alternatives. Here, we used a new in vitro split luciferase-based assay to screen a library of 177 toxicants for inhibitors of apoptosome formation. The apoptosome contains seven Apoptotic Protease-Activating Factor-1 (Apaf-1) molecules and induces cell death by activating caspase-9. Apaf-1-dependent caspase activation also plays an important role in CNS development and spermatogenesis. In the in vitro assay, Apaf-1 fused to an N-terminal fragment of luciferase binds to Apaf-1 fused to a C-terminal fragment of luciferase and reconstitutes luciferase activity. Our assay indicated that pentachlorophenol (PCP) inhibits apoptosome formation, and further investigation revealed that PCP binds to cytochrome c. PCP is a wood preservative that reduces male fertility by ill-defined mechanisms. Although the data show that PCP inhibited apoptosome formation, the concentration required suggests that other mechanisms may be more important for PCP's effects on spermatogenesis. Nonetheless, the data demonstrate the utility of the new assay in identifying apoptosome inhibitors, and we suggest that the assay may be useful in screening for reproductive and developmental toxicants.


Asunto(s)
Apoptosomas/efectos de los fármacos , Pentaclorofenol/toxicidad , Pruebas de Toxicidad/métodos , Apoptosis/efectos de los fármacos , Apoptosomas/metabolismo , Factor Apoptótico 1 Activador de Proteasas/metabolismo , Muerte Celular , Citocromos c/metabolismo , Células HEK293 , Humanos , Luciferasas/metabolismo , Pentaclorofenol/farmacología , Transducción de Señal , Bibliotecas de Moléculas Pequeñas
17.
Curr Pharm Des ; 22(34): 5179-5195, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27262334

RESUMEN

The search for new drug candidates in databases is of paramount importance in pharmaceutical chemistry. The selection of molecular subsets is greatly optimized and much more promising when potential drug-like molecules are detected a priori. In this work, about one hundred thousand molecules are ranked following a new methodology: a drug/non-drug classifier constructed by a consensual set of classification trees. The classification trees arise from the stochastic generation of training sets, which in turn are used to estimate probability factors of test molecules to be drug-like compounds. Molecules were represented by Topological Quantum Similarity Indices and their Graph Theoretical counterparts. The contribution of the present paper consists of presenting an effective ranking method able to improve the probability of finding drug-like substances by using these types of molecular descriptors.


Asunto(s)
Algoritmos , Preparaciones Farmacéuticas/química , Teoría Cuántica , Química Farmacéutica , Bases de Datos Factuales
18.
Cancer Cell ; 28(2): 170-82, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26267534

RESUMEN

Nearly 50% of human malignancies exhibit unregulated RAS-ERK signaling; inhibiting it is a valid strategy for antineoplastic intervention. Upon activation, ERK dimerize, which is essential for ERK extranuclear, but not for nuclear, signaling. Here, we describe a small molecule inhibitor for ERK dimerization that, without affecting ERK phosphorylation, forestalls tumorigenesis driven by RAS-ERK pathway oncogenes. This compound is unaffected by resistance mechanisms that hamper classical RAS-ERK pathway inhibitors. Thus, ERK dimerization inhibitors provide the proof of principle for two understudied concepts in cancer therapy: (1) the blockade of sub-localization-specific sub-signals, rather than total signals, as a means of impeding oncogenic RAS-ERK signaling and (2) targeting regulatory protein-protein interactions, rather than catalytic activities, as an approach for producing effective antitumor agents.


Asunto(s)
Carcinogénesis/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Multimerización de Proteína/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas ras/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Embrión de Pollo , Femenino , Células HEK293 , Humanos , Immunoblotting , Indoles/química , Indoles/metabolismo , Indoles/farmacología , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Proteína Quinasa 1 Activada por Mitógenos/química , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Modelos Moleculares , Estructura Molecular , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Estructura Terciaria de Proteína , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Pez Cebra
19.
Bioorg Med Chem ; 21(7): 1944-51, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23415087

RESUMEN

Heparanase is a key enzyme involved in the dissemination of metastatic cancer cells. In this study a combination of in silico techniques and experimental methods was used to identify new potential inhibitors against this target. A 3D model of heparanase was built from sequence homology and applied to the virtual screening of a library composed of 27 known heparanase inhibitors and a commercial collection of drugs and drug-like compounds. The docking results from this campaign were combined with those obtained from a pharmacophore model recently published based in the same set of chemicals. Compounds were then ranked according to their theoretical binding affinity, and the top-rated commercial drugs were selected for further experimental evaluation. Biophysical methods (NMR and SPR) were applied to assess experimentally the interaction of the selected compounds with heparanase. The binding site was evaluated via competition experiments, using a known inhibitor of heparanase. Three of the selected drugs were found to bind to the active site of the protein and their KD values were determined. Among them, the antimalarial drug amodiaquine presented affinity towards the protein in the low-micromolar range, and was singled out for a SAR study based on its chemical scaffold. A subset of fourteen 4-arylaminoquinolines from a global set of 249 analogues of amodiaquine was selected based on the application of in silico models, a QSAR solubility prediction model and a chemical diversity analysis. Some of these compounds displayed binding affinities in the micromolar range.


Asunto(s)
Amodiaquina/análogos & derivados , Amodiaquina/farmacología , Antimaláricos/química , Antimaláricos/farmacología , Diseño de Fármacos , Glucuronidasa/antagonistas & inhibidores , Sitios de Unión , Dominio Catalítico/efectos de los fármacos , Glucuronidasa/química , Glucuronidasa/metabolismo , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Relación Estructura-Actividad Cuantitativa , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...