Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neuromuscul Dis ; 11(3): 613-623, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578899

RESUMEN

Background/Objective: Myasthenia Gravis (MG) is an autoimmune disorder characterized by pathogenic autoantibodies (AAbs) targeting nicotinic acetylcholine receptors (AChR), disrupting neuromuscular communication. RadioImmunoPrecipitation Assay (RIPA) is recommended to detect AChR AAbs, but its complexity and radioactive requirements limit widespread use. We compare non-RIPA anti-AChR immunoassays, including Cell-Based Assay (CBA) and two ELISA kits, against the gold standard RIPA. Methods/Results: 145 samples were included with medical indication for anti-AChR testing. By the RIPA method, 63 were negative (RIPA-Neg < 0.02 nmol/L), 18 were classified as Borderline (≥0.02 -1 nmol/L), and 64 were positive (RIPA-Pos > 1 nmol/L). The competitive ELISA showed poor agreement with RIPA (Kappa = 0.216). The indirect ELISA demonstrated substantial agreement with RIPA (Kappa = 0.652), with ∼76% sensitivity and ∼94% specificity for MG diagnostic. The CBA, where fixed cells expressing clustered AChR were used as substrate, exhibited almost perfect agreement with RIPA (Kappa = 0.984), yielding ∼98% sensitivity and 96% specificity for MG. In addition, a semiquantitative analysis showed a strong correlation between CBA titration, indirect ELISA, and RIPA levels (r = 0.793 and r = 0.789, respectively). Conclusions: The CBA displayed excellent analytical performance for MG diagnostic when compared to RIPA, making it a potential replacement for RIPA in clinical laboratories. Some solid-phase assays (such as the indirect ELISA applied here), as well as CBA titration, offer reliable options to estimate anti-AChR AAb levels after confirming positivity by the CBA.∥.


Asunto(s)
Autoanticuerpos , Ensayo de Inmunoadsorción Enzimática , Miastenia Gravis , Ensayo de Radioinmunoprecipitación , Humanos , Ensayo de Inmunoadsorción Enzimática/métodos , Miastenia Gravis/inmunología , Miastenia Gravis/diagnóstico , Sensibilidad y Especificidad , Receptores Colinérgicos/inmunología , Femenino , Masculino , Persona de Mediana Edad , Adulto , Anciano , Adulto Joven
2.
Cells ; 11(21)2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36359755

RESUMEN

COVID-19, the infectious disease caused by SARS-CoV-2, has spread on a pandemic scale. The viral infection can evolve asymptomatically or can generate severe symptoms, influenced by the presence of comorbidities. Lymphopenia based on the severity of symptoms in patients affected with COVID-19 is frequent. However, the profiles of CD4+ and CD8+ T cells regarding cytotoxicity and antiviral factor expression have not yet been completely elucidated in acute SARS-CoV-2 infections. The purpose of this study was to evaluate the phenotypic and functional profile of T lymphocytes in patients with moderate and severe/critical COVID-19. During the pandemic period, we analyzed a cohort of 62 confirmed patients with SARS-CoV-2 (22 moderate cases and 40 severe/critical cases). Notwithstanding lymphopenia, we observed an increase in the expression of CD28, a co-stimulator molecule, and activation markers (CD38 and HLA-DR) in T lymphocytes as well as an increase in the frequency of CD4+ T cells, CD8+ T cells, and NK cells that express the immunological checkpoint protein PD-1 in patients with a severe/critical condition compared to healthy controls. Regarding the cytotoxic profile of peripheral blood mononuclear cells, an increase in the response of CD4+ T cells was already observed at the baseline level and scarcely changed upon PMA and Ionomycin stimulation. Meanwhile, CD8+ T lymphocytes decreased the cytotoxic response, evidencing a profile of exhaustion in patients with severe COVID-19. As observed by t-SNE, there were CD4+ T-cytotoxic and CD8+ T with low granzyme production, evidencing their dysfunction in severe/critical conditions. In addition, purified CD8+ T lymphocytes from patients with severe COVID-19 showed increased constitutive expression of differentially expressed genes associated with the caspase pathway, inflammasome, and antiviral factors, and, curiously, had reduced expression of TNF-α. The cytotoxic profile of CD4+ T cells may compensate for the dysfunction/exhaustion of TCD8+ in acute SARS-CoV-2 infection. These findings may provide an understanding of the interplay of cytotoxicity between CD4+ T cells and CD8+ T cells in the severity of acute COVID-19 infection.


Asunto(s)
COVID-19 , Linfopenia , Humanos , SARS-CoV-2 , Leucocitos Mononucleares , Linfocitos T CD8-positivos , Linfopenia/metabolismo , Antivirales/metabolismo
3.
J Immunol Res ; 2022: 9764002, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35971391

RESUMEN

COVID-19 has several mechanisms that can lead to lymphocyte depletion/exhaustion. The checkpoint inhibitor molecule programmed death protein 1 (PD-1) and its programmed death-ligand 1 (PDL-1) play an important role in inhibiting cellular activity as well as the depletion of these cells. In this study, we evaluated PD-1 expression in TCD4+, TCD8+, and CD19+ lymphocytes from SARS-CoV-2-infected patients. A decreased frequency of total lymphocytes and an increased PD-1 expression in TCD4+ and CD19+ lymphocytes were verified in severe/critical COVID-19 patients. In addition, we found a decreased frequency of total monocytes with an increased PD-1 expression on CD14+ monocytes in severe/critical patients in association with the time of infection. Moreover, we observed an increase in sPD-L1 circulant levels associated with the severity of the disease. Overall, these data indicate an important role of the PD-1/PDL-1 axis in COVID-19 and may provide a severity-associated biomarker and therapeutic target during SARS-CoV-2 infection.


Asunto(s)
Antígeno B7-H1 , COVID-19 , Receptor de Muerte Celular Programada 1 , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , COVID-19/diagnóstico , COVID-19/patología , Humanos , Monocitos/metabolismo , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , SARS-CoV-2 , Regulación hacia Arriba
4.
Life (Basel) ; 11(10)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34685377

RESUMEN

Coronavirus disease 2019 (COVID-19) caused millions of deaths worldwide. COVID-19's clinical manifestations range from no symptoms to a severe acute respiratory syndrome, which can result in multiple organ failure, sepsis, and death. Severe COVID-19 patients develop pulmonary and extrapulmonary infections, with a hypercoagulable state. Several inflammatory or coagulatory biomarkers are currently used with predictive values for COVID-19 severity and prognosis. In this manuscript, we investigate if a combination of coagulatory and inflammatory biomarkers could provide a better biomarker with predictive value for COVID-19 patients, being able to distinguish between patients that would develop a moderate or severe COVID-19 and predict the disease outcome. We investigated 306 patients with COVID-19, confirmed by severe acute respiratory syndrome coronavirus 2 RNA detected in the nasopharyngeal swab, and retrospectively analyzed the laboratory data from the first day of hospitalization. In our cohort, biomarkers such as neutrophil count and neutrophil-to-lymphocyte ratio from the day of hospitalization could predict if the patient would need to be transferred to the intensive care unit but failed to identify the patients´ outcomes. The ratio between platelets and inflammatory markers such as creatinine, C-reactive protein, and urea levels is associated with patient outcomes. Finally, the platelet/neutrophil-to-lymphocyte ratio on the first day of hospitalization can be used with predictive value as a novel severity and lethality biomarker in COVID-19. These new biomarkers with predictive value could be used routinely to stratify the risk in COVID-19 patients since the first day of hospitalization.

5.
Front Nutr ; 8: 674258, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557509

RESUMEN

Nutrition is an important tool that can be used to modulate the immune response during infectious diseases. In addition, through diet, important substrates are acquired for the biosynthesis of regulatory molecules in the immune response, influencing the progression and treatment of chronic lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD). In this way, nutrition can promote lung health status. A range of nutrients, such as vitamins (A, C, D, and E), minerals (zinc, selenium, iron, and magnesium), flavonoids and fatty acids, play important roles in reducing the risk of pulmonary chronic diseases and viral infections. Through their antioxidant and anti-inflammatory effects, nutrients are associated with better lung function and a lower risk of complications since they can decrease the harmful effects from the immune system during the inflammatory response. In addition, bioactive compounds can even contribute to epigenetic changes, including histone deacetylase (HDAC) modifications that inhibit the transcription of proinflammatory cytokines, which can contribute to the maintenance of homeostasis in the context of infections and chronic inflammatory diseases. These nutrients also play an important role in activating immune responses against pathogens, which can help the immune system during infections. Here, we provide an updated overview of the roles played by dietary factors and how they can affect respiratory health. Therefore, we will show the anti-inflammatory role of flavonoids, fatty acids, vitamins and microbiota, important for the control of chronic inflammatory diseases and allergies, in addition to the antiviral role of vitamins, flavonoids, and minerals during pulmonary viral infections, addressing the mechanisms involved in each function. These mechanisms are interesting in the discussion of perspectives associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its pulmonary complications since patients with severe disease have vitamins deficiency, especially vitamin D. In addition, researches with the use of flavonoids have been shown to decrease viral replication in vitro. This way, a full understanding of dietary influences can improve the lung health of patients.

6.
Trop Med Infect Dis ; 6(1)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33579042

RESUMEN

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 has infected over 90 million people worldwide, therefore it is considered a pandemic. SARS-CoV-2 infection can lead to severe pneumonia, acute respiratory distress syndrome (ARDS), septic shock, and/or organ failure. Individuals receiving a heart transplantation (HT) may be at higher risk of adverse outcomes attributable to COVID-19 due to immunosuppressives, as well as concomitant infections that may also influence the prognoses. Herein, we describe the first report of two cases of HT recipients with concomitant infections by SARS-CoV-2, Trypanosoma cruzi, and cytomegalovirus (CMV) dissemination, from the first day of hospitalization due to COVID-19 in the intensive care unit (ICU) until the death of the patients.

7.
Front Med (Lausanne) ; 7: 580677, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178720

RESUMEN

Common clinical features of patients with Coronavirus disease-2019 (COVID-19) vary from fever, to acute severe respiratory distress syndrome. Several laboratory parameters are reported as indicators of COVID-19 severity. We hereby describe the possible novel severity biomarkers for COVID-19, CD11b+CD33+HLA-DR-CD14+ cells and CD11b+CD33+HLA-DR-CD66b+ cells.

8.
Am J Trop Med Hyg ; 103(6): 2353-2356, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33025877

RESUMEN

American trypanosomiasis, also named Chagas disease (CD), is an anthropozoonosis caused by the protozoan parasite Trypanosoma cruzi. The disease affects millions of people worldwide, leading yearly to approximately 50,000 deaths. COVID-19, generated by SARS-CoV-2, can lead to lymphopenia and death. We hereby describe the first report of two patients with CD and COVID-19 coinfection, from hospitalization until patients' death.


Asunto(s)
COVID-19/diagnóstico , Cardiomiopatía Chagásica/diagnóstico , ARN Viral/genética , SARS-CoV-2/patogenicidad , Trypanosoma cruzi/patogenicidad , Anciano , Brasil , COVID-19/parasitología , COVID-19/patología , COVID-19/virología , Prueba de COVID-19/métodos , Cardiomiopatía Chagásica/parasitología , Cardiomiopatía Chagásica/patología , Cardiomiopatía Chagásica/virología , Coinfección , Progresión de la Enfermedad , Resultado Fatal , Femenino , Hospitalización , Humanos , Masculino , Marcapaso Artificial , SARS-CoV-2/genética , Tomografía Computarizada por Rayos X , Trypanosoma cruzi/genética
9.
Front Immunol ; 11: 1672, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733490

RESUMEN

Pregnancy comprises a unique immunological condition, to allow fetal development and to protect the host from pathogenic infections. Viral infections during pregnancy can disrupt immunological tolerance and may generate deleterious effects on the fetus. Despite these possible links between pregnancy and infection-induced morbidity, it is unclear how pregnancy interferes with maternal response to some viral pathogens. In this context, the novel coronavirus (SARS-CoV-2) can induce the coronavirus diseases-2019 (COVID-19) in pregnant women. The potential risk of vertical transmission is unclear, babies born from COVID-19-positive mothers seems to have no serious clinical symptoms, the possible mechanisms are discussed, which highlights that checking the children's outcome and more research is warranted. In this review, we investigate the reports concerning viral infections and COVID-19 during pregnancy, to establish a correlation and possible implications of COVID-19 during pregnancy and neonatal's health.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/transmisión , Neumonía Viral/inmunología , Neumonía Viral/transmisión , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/virología , COVID-19 , Preescolar , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/virología , Citocinas/sangre , Femenino , Desarrollo Fetal/inmunología , Humanos , Lactante , Recién Nacido , Transmisión Vertical de Enfermedad Infecciosa , Madres , Pandemias , Neumonía Viral/sangre , Neumonía Viral/virología , Embarazo , Complicaciones Infecciosas del Embarazo/sangre , SARS-CoV-2
10.
Front Physiol ; 11: 637627, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584342

RESUMEN

The severe respiratory and systemic disease named coronavirus disease-2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, the COVID-19 pandemic presents a huge social and health challenge worldwide. Many different risk factors are associated with disease severity, such as systemic arterial hypertension, diabetes mellitus, obesity, older age, and other co-infections. Other respiratory diseases such as chronic obstructive pulmonary disease (COPD) and smoking are common comorbidities worldwide. Previous investigations have identified among COVID-19 patients smokers and COPD patients, but recent investigations have questioned the higher risk among these populations. Nevertheless, previous reports failed to isolate smokers and COPD patients without other comorbidities. We performed a longitudinal evaluation of the disease course of smokers, former smokers, and COPD patients with COVID-19 without other comorbidities, from hospitalization to hospital discharge. Although no difference between groups was observed during hospital admission, smokers and COPD patients presented an increase in COVID-19-associated inflammatory markers during the disease course in comparison to non-smokers and former smokers. Our results demonstrated that smoking and COPD are risk factors for severe COVID-19 with possible implications for the ongoing pandemic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...