Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(2): 105618, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176652

RESUMEN

The F1FO-ATP synthase engine is essential for viability and growth of nontuberculous mycobacteria (NTM) by providing the biological energy ATP and keeping ATP homeostasis under hypoxic stress conditions. Here, we report the discovery of the diarylquinoline TBAJ-5307 as a broad spectrum anti-NTM inhibitor, targeting the FO domain of the engine and preventing rotation and proton translocation. TBAJ-5307 is active at low nanomolar concentrations against fast- and slow-growing NTM as well as clinical isolates by depleting intrabacterial ATP. As demonstrated for the fast grower Mycobacterium abscessus, the compound is potent in vitro and in vivo, without inducing toxicity. Combining TBAJ-5307 with anti-NTM antibiotics or the oral tebipenem-avibactam pair showed attractive potentiation. Furthermore, the TBAJ-5307-tebipenem-avibactam cocktail kills the pathogen, suggesting a novel oral combination for the treatment of NTM lung infections.


Asunto(s)
Antibacterianos , Diarilquinolinas , Inhibidores Enzimáticos , Infecciones por Mycobacterium no Tuberculosas , Micobacterias no Tuberculosas , Humanos , Adenosina Trifosfato , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Compuestos de Azabiciclo , Carbapenémicos , Inhibidores Enzimáticos/farmacología , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Diarilquinolinas/farmacología
2.
Biochem Biophys Res Commun ; 690: 149249, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38000294

RESUMEN

The anti-tuberculosis therapeutic bedaquiline (BDQ) is used against Mycobacterium abscessus. In M. abscessus BDQ is only bacteriostatic and less potent compared to M. tuberculosis or M. smegmatis. Here we demonstrate its reduced ATP synthesis inhibition against M. abscessus inside-out vesicles, including the F1FO-ATP synthase. Molecular dynamics simulations and binding free energy calculations highlight the differences in drug-binding of the M. abscessus and M. smegmatis FO-domain at the lagging site, where the drug deploys its mechanistic action, inhibiting ATP synthesis. These data pave the way for improved anti-M. abscessus BDQ analogs.


Asunto(s)
Mycobacterium abscessus , Mycobacterium tuberculosis , Antituberculosos/farmacología , Diarilquinolinas/farmacología , Diarilquinolinas/metabolismo , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico Sintasa/metabolismo , Adenosina Trifosfato/metabolismo , Pruebas de Sensibilidad Microbiana
3.
Microbiol Spectr ; 11(6): e0228223, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37982630

RESUMEN

IMPORTANCE: New drugs are needed to combat multidrug-resistant tuberculosis. The electron transport chain (ETC) maintains the electrochemical potential across the cytoplasmic membrane and allows the production of ATP, the energy currency of any living cell. The mycobacterial engine F-ATP synthase catalyzes the formation of ATP and has come into focus as an attractive and rich drug target. Recent deep insights into these mycobacterial F1FO-ATP synthase elements opened the door for a renaissance of structure-based target identification and inhibitor design. In this study, we present the GaMF1.39 antimycobacterial compound, targeting the rotary subunit γ of the biological engine. The compound is bactericidal, inhibits infection ex vivo, and displays enhanced anti-tuberculosis activity in combination with ETC inhibitors, which promises new strategies to shorten tuberculosis chemotherapy.


Asunto(s)
Clofazimina , Mycobacterium tuberculosis , Clofazimina/farmacología , Clofazimina/uso terapéutico , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Adenosina Trifosfato
4.
Expert Opin Drug Discov ; 18(8): 917-927, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37332221

RESUMEN

INTRODUCTION: Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is the most devastating bacterial disease. Multidrug-resistant Mtb strains are spreading worldwide, underscoring the need for new anti-TB targets and inhibitors. The respiratory chain complexes, including the cytochrome bd oxidase (cyt-bd), have been identified as an attractive target for drug development. Recent novel structural and mechanistic insight as well as inhibitors of Mtb's cyt-bd brought this enzyme into the focus. AREAS COVERED: In this review, the authors describe conditions that stimulate the biogenesis of Mtb cyt-bd, its structural-, mechanistic-, and substrate-binding traits. They discuss the present Mtb cyt-bd inhibitors, novel targets within the enzyme and structure activity relationship features that are required for mycobacterial cyt-bd inhibition and augment their understanding on improving the potency of cyt-bd inhibitors. EXPERT OPINION: A deeper structure-mechanistic understanding of Mtb's cyt-bd is a prerequisite for in silico efforts to: (i) identify pathogen specific targets for the design of novel nontoxic hit molecules, forming the platform for the development of new leads, (ii) design mechanism of action studies, (iii) perform medicinal chemistry of existing inhibitors to improve their potency and pharmacokinetic/-dynamic properties. Phase studies with such optimized cyt-bd inhibitors in combination with anti-TB compounds targeting the oxidative phosphorylation pathway is recommended.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Antituberculosos/farmacología , Antituberculosos/química , Complejo IV de Transporte de Electrones/metabolismo , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Citocromos
5.
Biochem Biophys Res Commun ; 671: 140-145, 2023 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-37302287

RESUMEN

The cases of lung disease caused by non-tuberculous mycobacterium Mycobacterium abscessus (Mab) are increasing and not reliably curable. Repurposing of anti-tuberculosis inhibitors brought the oxidative phosphorylation pathway with its final product ATP, formed by the essential F1FO-ATP synthase (subunits α3:ß3:γ:δ:ε:a:b:b':c9), into focus as an attractive inhibitor target against Mab. Because of the pharmacological attractiveness of this enzyme, we generated and purified a recombinant and enzymatically active Mab F1-ATPase complex, including subunits α3:ß3:γ:δ:ε (MabF1-αßγδε) to achieve mechanistic, regulatory, and structural insights. The high purity of the complex enabled the first cryo-electron microscopy structure determination of the Mab F1-ATPase complex to 7.3 Å resolution. The enzyme showed low ATP hydrolysis activity, which was stimulated by trypsin treatment. No effect was observed in the presence of the detergent lauryldimethylamine oxide.


Asunto(s)
Mycobacterium abscessus , Tuberculosis , Humanos , Microscopía por Crioelectrón , Secuencia de Aminoácidos , ATPasas de Translocación de Protón/metabolismo , Adenosina Trifosfato/metabolismo
6.
FASEB J ; 37(7): e23040, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37318822

RESUMEN

The Acinetobacter baumannii F1 FO -ATP synthase (α3 :ß3 :γ:δ:ε:a:b2 :c10 ), which is essential for this strictly respiratory opportunistic human pathogen, is incapable of ATP-driven proton translocation due to its latent ATPase activity. Here, we generated and purified the first recombinant A. baumannii F1 -ATPase (AbF1 -ATPase) composed of subunits α3 :ß3 :γ:ε, showing latent ATP hydrolysis. A 3.0 Å cryo-electron microscopy structure visualizes the architecture and regulatory element of this enzyme, in which the C-terminal domain of subunit ε (Abε) is present in an extended position. An ε-free AbF1 -ɑßγ complex generated showed a 21.5-fold ATP hydrolysis increase, demonstrating that Abε is the major regulator of AbF1 -ATPase's latent ATP hydrolysis. The recombinant system enabled mutational studies of single amino acid substitutions within Abε or its interacting subunits ß and γ, respectively, as well as C-terminal truncated mutants of Abε, providing a detailed picture of Abε's main element for the self-inhibition mechanism of ATP hydrolysis. Using a heterologous expression system, the importance of Abε's C-terminus in ATP synthesis of inverted membrane vesicles, including AbF1 FO -ATP synthases, has been explored. In addition, we are presenting the first NMR solution structure of the compact form of Abε, revealing interaction of its N-terminal ß-barrel and C-terminal ɑ-hairpin domain. A double mutant of Abε highlights critical residues for Abε's domain-domain formation which is important also for AbF1 -ATPase's stability. Abε does not bind MgATP, which is described to regulate the up and down movements in other bacterial counterparts. The data are compared to regulatory elements of F1 -ATPases in bacteria, chloroplasts, and mitochondria to prevent wasting of ATP.


Asunto(s)
Acinetobacter baumannii , ATPasas de Translocación de Protón , Humanos , ATPasas de Translocación de Protón/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Hidrólisis , Microscopía por Crioelectrón , Secuencia de Aminoácidos , Bacterias/metabolismo , Adenosina Trifosfato/metabolismo
7.
FEBS Lett ; 597(15): 1977-1988, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37259564

RESUMEN

The architectural chromatin factor high-mobility group AT-hook 2 (HMGA2) is causally involved in several human malignancies and pathologies. HMGA2 is not expressed in most normal adult somatic cells, which renders the protein an attractive drug target. An established cell-based compound library screen identified the fibroblast growth factor receptor (FGFR) inhibitor PD173074 as an antagonist of HMGA2-mediated transcriptional reporter gene activation. We determined that PD173074 binds the C-terminus of HMGA2 and interferes with functional coordination of the three AT-hook DNA-binding domains mediated by the C-terminus. The HMGA2-antagonistic effect of PD173074 on transcriptional activation may therefore result from an induced altered DNA-binding mode of HMGA2. PD173074 as a novel HMGA2-specific antagonist could trigger the development of derivates with enhanced attributes and clinical potential.


Asunto(s)
Neoplasias , Receptores de Factores de Crecimiento de Fibroblastos , Adulto , Humanos , Activación Transcripcional , Cromatina , ADN/metabolismo , Proteína HMGA2/genética , Proteína HMGA2/metabolismo
8.
Antimicrob Agents Chemother ; 67(6): e0153122, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37158740

RESUMEN

The mycobacterial cytochrome bcc:aa3 complex deserves the name "supercomplex" since it combines three cytochrome oxidases-cytochrome bc, cytochrome c, and cytochrome aa3-into one supramolecular machine and performs electron transfer for the reduction of oxygen to water and proton transport to generate the proton motive force for ATP synthesis. Thus, the bcc:aa3 complex represents a valid drug target for Mycobacterium tuberculosis infections. The production and purification of an entire M. tuberculosis cytochrome bcc:aa3 are fundamental for biochemical and structural characterization of this supercomplex, paving the way for new inhibitor targets and molecules. Here, we produced and purified the entire and active M. tuberculosis cyt-bcc:aa3 oxidase, as demonstrated by the different heme spectra and an oxygen consumption assay. The resolved M. tuberculosis cyt-bcc:aa3 cryo-electron microscopy structure reveals a dimer with its functional domains involved in electron, proton, oxygen transfer, and oxygen reduction. The structure shows the two cytochrome cIcII head domains of the dimer, the counterpart of the soluble mitochondrial cytochrome c, in a so-called "closed state," in which electrons are translocated from the bcc to the aa3 domain. The structural and mechanistic insights provided the basis for a virtual screening campaign that identified a potent M. tuberculosis cyt-bcc:aa3 inhibitor, cytMycc1. cytMycc1 targets the mycobacterium-specific α3-helix of cytochrome cI and interferes with oxygen consumption by interrupting electron translocation via the cIcII head. The successful identification of a new cyt-bcc:aa3 inhibitor demonstrates the potential of a structure-mechanism-based approach for novel compound development.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Microscopía por Crioelectrón , Citocromos c , Protones , Oxígeno
9.
Antimicrob Agents Chemother ; 66(12): e0105622, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36445139

RESUMEN

The F1FO-ATP synthase is required for the viability of tuberculosis (TB) and nontuberculous mycobacteria (NTM) and has been validated as a drug target. Here, we present the cryo-EM structures of the Mycobacterium smegmatis F1-ATPase and the F1FO-ATP synthase with different nucleotide occupation within the catalytic sites and visualize critical elements for latent ATP hydrolysis and efficient ATP synthesis. Mutational studies reveal that the extended C-terminal domain (αCTD) of subunit α is the main element for the self-inhibition mechanism of ATP hydrolysis for TB and NTM bacteria. Rotational studies indicate that the transition between the inhibition state by the αCTD and the active state is a rapid process. We demonstrate that the unique mycobacterial γ-loop and subunit δ are critical elements required for ATP formation. The data underline that these mycobacterium-specific elements of α, γ, and δ are attractive targets, providing a platform for the discovery of species-specific inhibitors.


Asunto(s)
Mycobacterium tuberculosis , Mycobacterium , Tuberculosis , Humanos , Micobacterias no Tuberculosas , Hidrólisis , Adenosina Trifosfato
10.
Bioorg Med Chem ; 74: 117046, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36228522

RESUMEN

Tuberculosis (TB) remains a leading cause of infectious disease-related mortality and morbidity. Pyrazinamide (PZA) is a critical component of the first-line TB treatment regimen because of its sterilizing activity against non-replicating Mycobacterium tuberculosis (Mtb), but its mechanism of action has remained enigmatic. PZA is a prodrug converted by pyrazinamidase encoded by pncA within Mtb to the active moiety, pyrazinoic acid (POA) and PZA resistance is caused by loss-of-function mutations to pyrazinamidase. We have recently shown that POA induces targeted protein degradation of the enzyme PanD, a crucial component of the coenzyme A biosynthetic pathway essential in Mtb. Based on the newly identified mechanism of action of POA, along with the crystal structure of PanD bound to POA, we designed several POA analogs using structure for interpretation to improve potency and overcome PZA resistance. We prepared and tested ring and carboxylic acid bioisosteres as well as 3, 5, 6 substitutions on the ring to study the structure activity relationships of the POA scaffold. All the analogs were evaluated for their whole cell antimycobacterial activity, and a few representative molecules were evaluated for their binding affinity, towards PanD, through isothermal titration calorimetry. We report that analogs with ring and carboxylic acid bioisosteres did not significantly enhance the antimicrobial activity, whereas the alkylamino-group substitutions at the 3 and 5 position of POA were found to be up to 5 to 10-fold more potent than POA. Further development and mechanistic analysis of these analogs may lead to a next generation POA analog for treating TB.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Pirazinamida/farmacología , Pirazinamida/metabolismo , Antituberculosos/farmacología , Antituberculosos/metabolismo , Amidohidrolasas/metabolismo , Tuberculosis/microbiología , Mutación , Relación Estructura-Actividad , Ácidos Carboxílicos/metabolismo , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana
11.
Transfusion ; 62(12): 2621-2630, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36181447

RESUMEN

BACKGROUND: OctaplasLG is a frozen solvent/detergent-treated plasma product used for treating complex coagulation factor deficiencies or as substitution therapy in emergency situations where specific factor concentrates are not available. A new freeze-dried (also known as lyophilized) form of OctaplasLG, referred as OctaplasLG Lyo (Octapharma AG, Switzerland) offers rapid reconstitution and more flexible storage conditions, improving logistics and utilization. This study compared the biochemical quality of OctaplasLG Lyo with OctaplasLG and single-donor fresh frozen plasma units. STUDY DESIGN AND METHODS: Three batches of OctaplasLG Lyo, manufactured for production process qualification, and 12 batches of OctaplasLG were provided by Octapharma AB (Sweden). Twelve units of fresh frozen plasma were collected by the local FDA-licensed blood provider. All plasma samples were assessed for global coagulation parameters, coagulation factors and protease inhibitors, activation markers of coagulation and fibrinolysis, and important plasma proteins. Quality control assays were conducted in accordance with European Pharmacopeia requirements. RESULTS: Frozen and freeze-dried OctaplasLG demonstrated comparable quality profiles upon thawing or reconstitution. All coagulation factor and protease inhibitor activity parameters were in line with levels mandated by the European Pharmacopeia. Fresh frozen plasma units showed comparable coagulation factor activities, with higher protein S and plasmin inhibitor levels than the OctaplasLG products. Fresh frozen plasma parameters showed high lot-to-lot variations. DISCUSSION: The two pharmaceutical forms of OctaplasLG (frozen and freeze-dried) have comparable biochemical quality. Key features of OctaplasLG Lyo are rapid reconstitution time and storage flexibility, which may improve logistics and utilization, and have particular advantages in emergency situations and pre-hospital settings.


Asunto(s)
Factores de Coagulación Sanguínea , Plasma , Humanos , Composición de Medicamentos , Solventes , Suecia
12.
Curr Res Struct Biol ; 4: 278-284, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186842

RESUMEN

Tuberculosis (TB), the deadly disease caused by Mycobacterium tuberculosis (Mtb), kills more people worldwide than any other bacterial infectious disease. There has been a recent resurgence of TB drug discovery activities, resulting in the identification of a number of novel enzyme inhibitors. Many of these inhibitors target the electron transport chain complexes and the F1FO-ATP synthase; these enzymes represent new target spaces for drug discovery, since the generation of ATP is essential for the bacterial pathogen's physiology, persistence, and pathogenicity. The anti-TB drug bedaquiline (BDQ) targets the Mtb F-ATP synthase and is used as salvage therapy against this disease. Medicinal chemistry efforts to improve the physio-chemical properties of BDQ resulted in the discovery of 3,5-dialkoxypyridine (DARQ) analogs to which TBAJ-876 belongs. TBAJ-876, a clinical development candidate, shows attractive in vitro and in vivo antitubercular activity. Both BDQ and TBAJ-876 inhibit the mycobacterial F1FO-ATP synthase by stopping rotation of the c-ring turbine within the FO domain, thereby preventing proton translocation and ATP synthesis to occur. While structural data for the BDQ bound state are available, no structural information about TBAJ-876 binding have been described. In this study, we show how TBAJ-876 binds to the FO domain of the M. smegmatis F1FO-ATP synthase. We further calculate the binding free energy of both drugs bound to their target and predict an increased affinity of TBAJ-876 for the FO domain. This approach will be useful in future efforts to design new and highly potent DARQ analogs targeting F-ATP synthases of Mtb, nontuberculosis mycobacteria (NTM) as well as the M. leprosis complex.

13.
ACS Infect Dis ; 8(7): 1324-1335, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35731701

RESUMEN

Mycobacterium tuberculosis (Mtb) aspartate decarboxylase PanD is required for biosynthesis of the essential cofactor coenzyme A and targeted by the first line drug pyrazinamide (PZA). PZA is a prodrug that is converted by a bacterial amidase into its bioactive form pyrazinoic acid (POA). Employing structure-function analyses we previously identified POA-based inhibitors of Mtb PanD showing much improved inhibitory activity against the enzyme. Here, we performed the first structure-function studies on PanD encoded by the nontuberculous mycobacterial lung pathogen Mycobacterium abscessus (Mab), shedding light on the differences and similarities of Mab and Mtb PanD. Solution X-ray scattering data provided the solution structure of the entire tetrameric Mab PanD, which in comparison to the structure of the derived C-terminal truncated Mab PanD1-114 mutant revealed the orientation of the four flexible C-termini relative to the catalytic core. Enzymatic studies of Mab PanD1-114 explored the essentiality of the C-terminus for catalysis. A library of recombinant Mab PanD mutants based on structural information and PZA/POA resistant PanD mutations in Mtb illuminated critical residues involved in the substrate tunnel and enzymatic activity. Using our library of POA analogues, we identified (3-(1-naphthamido)pyrazine-2-carboxylic acid) (analogue 2) as the first potent inhibitor of Mab PanD. The inhibitor shows mainly electrostatic- and hydrogen bonding interaction with the target enzyme as explored by isothermal titration calorimetry and confirmed by docking studies. The observed unfavorable entropy indicates that significant conformational changes are involved in the binding process of analogue 2 to Mab PanD. In contrast to PZA and POA, which are whole-cell inactive, analogue 2 exerts appreciable antibacterial activity against the three subspecies of Mab.


Asunto(s)
Mycobacterium abscessus , Pirazinamida , Antituberculosos/farmacología , Carboxiliasas , Pirazinamida/análogos & derivados , Pirazinamida/farmacología
14.
FEBS J ; 289(20): 6308-6323, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35612822

RESUMEN

Mycobacterium abscessus (Mab) is a nontuberculous mycobacterium of increasing clinical relevance. The rapidly growing opportunistic pathogen is intrinsically multi-drug-resistant and causes difficult-to-cure lung disease. Adenosine triphosphate, generated by the essential F1 FO ATP synthase, is the major energy currency of the pathogen, bringing this enzyme complex into focus for the discovery of novel antimycobacterial compounds. Coupling of proton translocation through the membrane-embedded FO sector and ATP formation in the F1 headpiece of the bipartite F1 FO ATP synthase occurs via the central stalk subunits γ and ε. Here, we used solution NMR spectroscopy to resolve the first atomic structure of the Mab subunit ε (Mabε), showing that it consists of an N-terminal ß-barrel domain (NTD) and a helix-loop-helix motif in its C-terminal domain (CTD). NMR relaxation measurements of Mabε shed light on dynamic epitopes and amino acids relevant for coupling processes within the protein. We describe structural differences between other mycobacterial ε subunits and Mabε's lack of ATP binding. Based on the structural insights, we conducted an in silico inhibitor screen. One hit, Ep1MabF1, was shown to inhibit the growth of Mab and bacterial ATP synthesis. NMR titration experiments and docking studies described the binding epitopes of Ep1MabF1 on Mabε. Together, our data demonstrate the potential to develop inhibitors targeting the ε subunit of Mab F1 FO ATP synthase to interrupt the coupling process.


Asunto(s)
Mycobacterium abscessus , ATPasas de Translocación de Protón , Adenosina Trifosfato/metabolismo , Aminoácidos , Proteínas Bacterianas/metabolismo , Epítopos , Conformación Proteica , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/metabolismo , Protones
15.
Antimicrob Agents Chemother ; 66(5): e0001822, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35481752

RESUMEN

New drug targets and molecules with bactericidal activity are needed against the respiratory mycobacterial pathogen Mycobacterium abscessus. Employing a lead repurposing strategy, the antituberculosis compound GaMF1 was tested against M. abscessus. Whole-cell and ATP synthesis assays demonstrated that GaMF1 inhibits growth and kills M. abscessus by targeting the F-ATP synthase. GaMF1's anti-M. abscessus activity increased in combination with clofazimine, rifabutin, or amikacin. The study expands the repertoire of anti-M. abscessus compounds targeting oxidative phosphorylation.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Tuberculosis , Adenosina Trifosfato , Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología
16.
ACS Chem Biol ; 17(3): 529-535, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35148057

RESUMEN

While many bacteria are able to bypass the requirement for oxidative phosphorylation when grown on carbohydrates, Mycobacterium tuberculosis is unable to do so. Differences of amino acid composition and structural features of the mycobacterial F-ATP synthase (α3:ß3:γ:δ:ε:a:b:b':c9) compared to its prokaryotic or human counterparts were recently elucidated and paved avenues for the discovery of molecules interfering with various regulative mechanisms of this essential energy converter. In this context, the mycobacterial peripheral stalk subunit δ came into focus, which displays a unique N-terminal 111-amino acid extension. Here, mutants of recombinant mycobacterial subunit δ were characterized, revealing significant reduction in ATP synthesis and demonstrating essentiality of this subunit for effective catalysis. These results provided the basis for the generation of a four-feature model forming a δ receptor-based pharmacophore and to identify a potent subunit δ inhibitor DeMF1 via in silico screening. The successful targeting of the δ subunit demonstrates the potential to advance δ's flexible coupling as a new area for the development of F-ATP synthase inhibitors.


Asunto(s)
Mycobacterium tuberculosis , ATPasas de Translocación de Protón , Adenosina Trifosfato/metabolismo , Aminoácidos/farmacología , Proteínas Bacterianas/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/genética
17.
Antibiotics (Basel) ; 10(12)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34943667

RESUMEN

Mycobacteria regulate their energy (ATP) levels to sustain their survival even in stringent living conditions. Recent studies have shown that mycobacteria not only slow down their respiratory rate but also block ATP hydrolysis of the F-ATP synthase (α3:ß3:γ:δ:ε:a:b:b':c9) to maintain ATP homeostasis in situations not amenable for growth. The mycobacteria-specific α C-terminus (α533-545) has unraveled to be the major regulative of latent ATP hydrolysis. Its deletion stimulates ATPase activity while reducing ATP synthesis. In one of the six rotational states of F-ATP synthase, α533-545 has been visualized to dock deep into subunit γ, thereby blocking rotation of γ within the engine. The functional role(s) of this C-terminus in the other rotational states are not clarified yet and are being still pursued in structural studies. Based on the interaction pattern of the docked α533-545 region with subunit γ, we attempted to study the druggability of the α533-545 motif. In this direction, our computational work has led to the development of an eight-featured α533-545 peptide pharmacophore, followed by database screening, molecular docking, and pose selection, resulting in eleven hit molecules. ATP synthesis inhibition assays using recombinant ATP synthase as well as mycobacterial inverted membrane vesicles show that one of the hits, AlMF1, inhibited the mycobacterial F-ATP synthase in a micromolar range. The successful targeting of the α533-545-γ interaction motif demonstrates the potential to develop inhibitors targeting the α site to interrupt rotary coupling with ATP synthesis.

18.
FEBS Lett ; 595(24): 3006-3018, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34808002

RESUMEN

The stringent response is critical for the survival of Mycobacterium tuberculosis (Mtb) under nutrient starvation. The mechanism is mediated by a GTP pyrophosphokinase known as Rel, containing N-terminal synthetase and hydrolase domains and C-terminal regulatory domains, which include the TGS domain (ThrRS, GTPase, and SpoT proteins) that has been proposed to activate the synthetase domain via interaction with deacylated tRNA. Here, we present the NMR solution structure of the Mtb Rel TGS domain (MtRel TGS), consisting of five antiparallel ß-strands and one helix-loop-helix motif. The interaction of MtRel TGS with deacylated tRNA is shown, indicating the critical amino acids of MtRel TGS in tRNA binding, and presenting the first structural evidence of MtRel TGS binding to deacylated tRNA in solution in the absence of the translational machinery.


Asunto(s)
Proteínas Bacterianas/química , Mycobacterium tuberculosis/metabolismo , ARN de Transferencia/metabolismo , Acetilación , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Clonación Molecular , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Dominios Proteicos , ARN de Transferencia/química
19.
ACS Chem Biol ; 16(6): 1030-1039, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33984234

RESUMEN

A common strategy employed in antibacterial drug discovery is the targeting of biosynthetic processes that are essential and specific for the pathogen. Specificity in particular avoids undesirable interactions with potential enzymatic counterparts in the human host, and it ensures on-target toxicity. Synthesis of pantothenate (Vitamine B5), which is a precursor of the acyl carrier coenzyme A, is an example of such a pathway. In Mycobacterium tuberculosis (Mtb), which is the causative agent of tuberculosis (TB), pantothenate is formed by pantothenate synthase, utilizing D-pantoate and ß-Ala as substrates. ß-Ala is mainly formed by the decarboxylation of l-aspartate, generated by the decarboxylase PanD, which is a homo-oliogomer in solution. Pyrazinoic acid (POA), which is the bioactive form of the TB prodrug pyrazinamide, binds and inhibits PanD activity weakly. Here, we generated a library of recombinant Mtb PanD mutants based on structural information and PZA/POA resistance mutants. Alterations in oligomer formation, enzyme activity, and/or POA binding were observed in respective mutants, providing insights into essential amino acids for Mtb PanD's proper structural assembly, decarboxylation activity and drug interaction. This information provided the platform for the design of novel POA analogues with modifications at position 3 of the pyrazine ring. Analogue 2, which incorporates a bulky naphthamido group at this position, displayed a 1000-fold increase in enzyme inhibition, compared to POA, along with moderately improved antimycobacterial activity. The data demonstrate that an improved understanding of mechanistic and enzymatic features of key metabolic enzymes can stimulate design of more-potent PanD inhibitors.


Asunto(s)
Antituberculosos/farmacología , Carboxiliasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/enzimología , Pirazinamida/análogos & derivados , Antituberculosos/química , Carboxiliasas/metabolismo , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinamida/química , Pirazinamida/farmacología , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
20.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33729990

RESUMEN

Cellulose is synthesized by cellulose synthases (CESAs) from the glycosyltransferase GT-2 family. In plants, the CESAs form a six-lobed rosette-shaped CESA complex (CSC). Here we report crystal structures of the catalytic domain of Arabidopsis thaliana CESA3 (AtCESA3CatD) in both apo and uridine diphosphate (UDP)-glucose (UDP-Glc)-bound forms. AtCESA3CatD has an overall GT-A fold core domain sandwiched between a plant-conserved region (P-CR) and a class-specific region (C-SR). By superimposing the structure of AtCESA3CatD onto the bacterial cellulose synthase BcsA, we found that the coordination of the UDP-Glc differs, indicating different substrate coordination during cellulose synthesis in plants and bacteria. Moreover, structural analyses revealed that AtCESA3CatD can form a homodimer mainly via interactions between specific beta strands. We confirmed the importance of specific amino acids on these strands for homodimerization through yeast and in planta assays using point-mutated full-length AtCESA3. Our work provides molecular insights into how the substrate UDP-Glc is coordinated in the CESAs and how the CESAs might dimerize to eventually assemble into CSCs in plants.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Celulosa/metabolismo , Glucosiltransferasas/química , Uridina Difosfato Glucosa/química , Aminoácidos , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Manganeso/química , Manganeso/metabolismo , Mutación , Multimerización de Proteína , Uridina Difosfato Glucosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA