Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Inherit Metab Dis ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38618884

RESUMEN

Fabry disease (FD) is an X-linked multiorgan disorder caused by variants in the alpha-galactosidase A gene (GLA). Depending on the variant, disease phenotypes range from benign to life-threatening. More than 1000 GLA variants are known, but a link between genotype and phenotype in FD has not yet been established for all. p.A143T, p.D313Y, and p.S126G are frequent examples of variants of unknown significance (VUS). We have investigated the potential pathogenicity of these VUS combining clinical data with data obtained in human cellular in vitro systems. We have analyzed four different male subject-derived cell types for alpha-galactosidase A enzyme (GLA) activity and intracellular Gb3 load. Additionally, Gb3 load in skin tissue as well as clinical data were studied for correlates of disease manifestations. A reduction of GLA activity was observed in cells carrying p.A143T compared with controls (p < 0.05). In cells carrying the p.D313Y variant, a reduced GLA activity was found only in endothelial cells (p < 0.01) compared with controls. No pathological changes were observed in cells carrying the p.S126G variant. None of the VUS investigated caused intracellular Gb3 accumulation in any cell type. Our data of aberrant GLA activity in cells of p.A143T hemizygotes and overall normal cellular phenotypes in cells of p.D313Y and p.S126G hemizygotes contribute a basic science perspective to the clinically highly relevant discussion on VUS in GLA.

2.
Brain Commun ; 6(2): fcae095, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638148

RESUMEN

Acral burning pain triggered by fever, thermal hyposensitivity and skin denervation are hallmarks of small fibre neuropathy in Fabry disease, a life-threatening X-linked lysosomal storage disorder. Variants in the gene encoding alpha-galactosidase A may lead to impaired enzyme activity with cellular accumulation of globotriaosylceramide. To study the underlying pathomechanism of Fabry-associated small fibre neuropathy, we generated a neuronal in vitro disease model using patient-derived induced pluripotent stem cells from three Fabry patients and one healthy control. We further generated an isogenic control line via gene editing. We subjected induced pluripotent stem cells to targeted peripheral neuronal differentiation and observed intra-lysosomal globotriaosylceramide accumulations in somas and neurites of Fabry sensory neurons using super-resolution microscopy. At functional level, patch-clamp analysis revealed a hyperpolarizing shift of voltage-gated sodium channel steady-state inactivation kinetics in isogenic control neurons compared with healthy control neurons (P < 0.001). Moreover, we demonstrate a drastic increase in Fabry sensory neuron calcium levels at 39°C mimicking clinical fever (P < 0.001). This pathophysiological phenotype was accompanied by thinning of neurite calibres in sensory neurons differentiated from induced pluripotent stem cells derived from Fabry patients compared with healthy control cells (P < 0.001). Linear-nonlinear cascade models fit to spiking responses revealed that Fabry cell lines exhibit altered single neuron encoding properties relative to control. We further observed mitochondrial aggregation at sphingolipid accumulations within Fabry sensory neurites utilizing a click chemistry approach together with mitochondrial dysmorphism compared with healthy control cells. We pioneer pilot insights into the cellular mechanisms contributing to pain, thermal hyposensitivity and denervation in Fabry small fibre neuropathy and pave the way for further mechanistic in vitro studies in Fabry disease and the development of novel treatment approaches.

3.
PLoS One ; 19(4): e0300687, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38593151

RESUMEN

Fabry disease (FD) is a lysosomal storage disorder of X-linked inheritance. Mutations in the α-galactosidase A gene lead to cellular globotriaosylceramide (Gb3) depositions and triggerable acral burning pain in both sexes as an early FD symptom of unknown pathophysiology. We aimed at elucidating the link between skin cells and nociceptor sensitization contributing to FD pain in a sex-associated manner. We used cultured keratinocytes and fibroblasts of 27 adult FD patients and 20 healthy controls. Epidermal keratinocytes and dermal fibroblasts were cultured and immunoreacted to evaluate Gb3 load. Gene expression analysis of pain-related ion channels and pro-inflammatory cytokines was performed in dermal fibroblasts. We further investigated electrophysiological properties of induced pluripotent stem cell (iPSC) derived sensory-like neurons of a man with FD and a healthy man and incubated the cells with interleukin 8 (IL-8) or fibroblast supernatant as an in vitro model system. Keratinocytes displayed no intracellular, but membrane-bound Gb3 deposits. In contrast, fibroblasts showed intracellular Gb3 and revealed higher gene expression of potassium intermediate/small conductance calcium-activated potassium channel 3.1 (KCa 3.1, KCNN4) in both, men and women with FD compared to controls. Additionally, cytokine expression analysis showed increased IL-8 RNA levels only in female FD fibroblasts. Patch-clamp studies revealed reduced rheobase currents for both iPSC neuron cell lines incubated with IL-8 or fibroblast supernatant of women with FD. We conclude that Gb3 deposition in female FD patient skin fibroblasts may lead to increased KCa3.1 activity and IL-8 secretion. This may result in cutaneous nociceptor sensitization as a potential mechanism contributing to a sex-associated FD pain phenotype.


Asunto(s)
Enfermedad de Fabry , Adulto , Femenino , Humanos , Masculino , alfa-Galactosidasa/genética , Citocinas , Enfermedad de Fabry/complicaciones , Enfermedad de Fabry/genética , Enfermedad de Fabry/diagnóstico , Fibroblastos/metabolismo , Interleucina-8/genética , Dolor , Piel/metabolismo
4.
Mol Genet Metab Rep ; 38: 101029, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38469097

RESUMEN

Fabry disease (FD) is a life-limiting disorder characterized by intracellular globotriaosylceramide (Gb3) accumulations. The underlying α-galactosidase A (α-GAL A) deficiency is caused by variants in the gene GLA. Variants of unknown significance (VUS) are frequently found in GLA and challenge clinical management. Here, we investigated a 49-year old man with cryptogenic lacunar cerebral stroke and the chance finding of the VUS S126G, who was sent to our center for diagnosis and initiation of a costly and life-long FD-specific treatment. We combined clinical examination with in vitro investigations of dermal fibroblasts (HDF), induced pluripotent stem cells (iPSC), and iPSC-derived sensory neurons. We analyzed α-GAL A activity in iPSC, Gb3 accumulation in all three cell types, and action potential firing in sensory neurons. Neurological examination and small nerve fiber assessment was normal except for reduced distal skin innervation. S126G iPSC showed normal α-GAL A activity compared to controls and no Gb3 deposits were found in all three cell types. Baseline electrophysiological characteristics of S126G neurons showed no difference compared to healthy controls as investigated by patch-clamp recordings. We pioneer multi-level cellular characterization of the VUS S126G using three cell types derived from a patient and provide further evidence for the benign nature of S126G in GLA, which is of great importance in the management of such cases in clinical practice.

5.
Front Immunol ; 14: 1189734, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37388725

RESUMEN

Introduction: IgG4 autoantibodies against paranodal proteins are known to induce acute-onset and often severe sensorimotor autoimmune neuropathies. How autoantibodies reach their antigens at the paranode in spite of the myelin barrier is still unclear. Methods: We performed in vitro incubation experiments with patient sera on unfixed and unpermeabilized nerve fibers and in vivo intraneural and intrathecal passive transfer of patient IgG to rats, to explore the access of IgG autoantibodies directed against neurofascin-155 and contactin-1 to the paranodes and their pathogenic effect. Results: We found that in vitro incubation resulted in weak paranodal binding of anti-contactin-1 autoantibodies whereas anti-neurofascin-155 autoantibodies bound to the nodes more than to the paranodes. After short-term intraneural injection, no nodal or paranodal binding was detectable when using anti-neurofascin-155 antibodies. After repeated intrathecal injections, nodal more than paranodal binding could be detected in animals treated with anti-neurofascin-155, accompanied by sensorimotor neuropathy. In contrast, no paranodal binding was visible in rats intrathecally injected with anti-contactin-1 antibodies, and animals remained unaffected. Conclusion: These data support the notion of different pathogenic mechanisms of anti-neurofascin-155 and anti-contactin-1 autoantibodies and different accessibility of paranodal and nodal structures.


Asunto(s)
Autoanticuerpos , Axones , Animales , Ratas , Contactina 1 , Inmunoglobulina G , Vaina de Mielina , Factor de Crecimiento Transformador beta
6.
Artículo en Inglés | MEDLINE | ID: mdl-34429341

RESUMEN

BACKGROUND AND OBJECTIVES: As autoantibodies to contactin-1 from patients with chronic inflammatory demyelinating polyradiculoneuropathy not only bind to the paranodes where they are supposed to cause conduction failure but also bind to other neuronal cell types, we aimed to investigate the effect of anti-contactin-1 autoantibodies on contactin-1 surface expression in cerebellar granule neurons, dorsal root ganglion neurons, and contactin-1-transfected human embryonic kidney 293 cells. METHODS: Immunocytochemistry including structured illumination microscopy and immunoblotting was used to determine expression levels of contactin-1 and/or sodium channels after long-term exposure to autoantibodies from 3 seropositive patients. For functional analysis of sodium channels, whole-cell recordings of sodium currents were performed on dorsal root ganglion neurons incubated with anti-contactin-1 autoantibodies. RESULTS: We found a reduction in contactin-1 expression levels on dorsal root ganglion neurons, cerebellar granule neurons, and contactin-1-transfected human embryonic kidney 293 cells and decreased dorsal root ganglion sodium currents after long-term exposure to anti-contactin-1 autoantibodies. Sodium channel density did not decrease. DISCUSSION: Our results demonstrate a direct effect of anti-contactin-1 autoantibodies on the surface expression of contactin-1 and sodium currents in dorsal root ganglion neurons. This may be the pathophysiologic correlate of sensory ataxia reported in these patients.


Asunto(s)
Autoanticuerpos/inmunología , Contactina 1/inmunología , Contactina 1/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiopatología , Canales de Sodio/fisiología , Ganglios Espinales/inmunología , Células HEK293 , Humanos , Polineuropatías/inmunología , Sodio/metabolismo , Canales de Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA