Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 471: 134338, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38643577

RESUMEN

The occurrence, environmental risks and contribution of organic UV filters to detected (anti-)progestogenic activities were examined in samples of wastewater treatment plant influents and effluents, various surface waters and fish from the Czech Republic. Of the 20 targeted UV filters, 15 were detected in the WWTP influent samples, 11 in the effluents, and 13 in the surface water samples. Benzophenone-3, benzophenone-4, and phenyl benzimidazole sulfonic acid (PBSA) were found in all water samples. Octocrylene, UV-327 and 4-methylbenzylidene camphor exceeded the risk quotient of 1 at some sites. In the anti-progestogenic CALUX assay, 10 out of the 20 targeted UV filters were active. Anti-progestogenic activities reaching up to 7.7 ng/L, 3.8 ng/L, and 4.5 ng/L mifepristone equivalents were detected in influents, effluents, and surface waters, respectively. UV filters were responsible for up to 37 % of anti-progestogenic activities in influents. Anti-progestogenic activities were also measured in fish tissues from the control pond and Podrouzek (pond with the highest number of detected UV filters) and ranged from 2.2 to 9.5 and 1.9 to 8.6 ng/g dw mifepristone equivalents, respectively. However, only benzophenone was found in fish, but it does not display anti-progestogenic activity and thus could not explain the observed activities.


Asunto(s)
Peces , Protectores Solares , Contaminantes Químicos del Agua , Animales , Protectores Solares/análisis , Protectores Solares/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , República Checa , Peces/metabolismo , Monitoreo del Ambiente , Aguas Residuales , Medición de Riesgo , Progestinas/análisis , Rayos Ultravioleta
2.
Water Res ; 254: 121360, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38422695

RESUMEN

Multiple human-induced environmental stressors significantly threaten global biodiversity and ecosystem functioning. Climate warming and chemical pollution are two widespread stressors whose impact on freshwaters is likely to increase. However, little is known about the combined effects of warming on the bioaccumulation of environmentally relevant mixtures of emerging contaminants, such as pharmaceutically active compounds (PhACs) in freshwater biota. This study investigated the bioaccumulation of a mixture of 15 selected PhACs at environmentally relevant concentrations in common freshwater macroinvertebrate taxa, exposed to ambient temperatures and warming (+4 °C) during the warm and cold seasons in two outdoor mesocosm experiments. Nine PhACs (carbamazepine, cetirizine, clarithromycin, clindamycin, fexofenadine, telmisartan, trimethoprim, valsartan and venlafaxine) were dissipated faster in the warm season experiment than in the cold season experiment, while lamotrigine showed the opposite trend. The most bioaccumulated PhACs in macroinvertebrates were tramadol, carbamazepine, telmisartan, venlafaxine, citalopram and cetirizine. The bioaccumulation was taxon, season and temperature dependent, but differences could not be fully explained by the different water stability of the PhACs and their partitioning between water and leaf litter. The highest water-based bioaccumulation factors were found in Asellus and Planorbarius. Moreover, the bioaccumulation of some PhACs increased with warming in Planorbarius, suggesting that it could be used as a sentinel taxon in environmental studies of the effects of climate warming on PhAC bioaccumulation.


Asunto(s)
Cetirizina , Ecosistema , Animales , Humanos , Bioacumulación , Telmisartán , Clorhidrato de Venlafaxina , Invertebrados , Agua Dulce , Carbamazepina , Agua , Preparaciones Farmacéuticas
3.
Water Res ; 250: 121053, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38159539

RESUMEN

Multiple anthropogenic stressors influence the functioning of lakes and ponds, but their combined effects are often little understood. We conducted two mesocosm experiments to evaluate the effects of warming (+4 °C above ambient temperature) and environmentally relevant concentrations of a mixture of commonly used pharmaceuticals (cardiovascular, psychoactive, antihistamines, antibiotics) on tri-trophic food webs representative of communities in ponds and other small standing waters. Communities were constituted of phyto- and zooplankton and macroinvertebrates (molluscs and insects) including benthic detritivores, grazers, omnivorous scrapers, omnivorous piercers, water column predators, benthic predators, and phytophilous predators. We quantified the main and interactive effects of warming and pharmaceuticals on each trophic level in the pelagic community and attributed them to the direct effects of both stressors and the indirect effects arising through biotic interactions. Warming and pharmaceuticals had stronger effects in the summer experiment, altering zooplankton community composition and causing delayed or accelerated emergence of top insect predators (odonates). In the summer experiment, both stressors and top predators reduced the biomass of filter-feeding zooplankton (cladocerans), while warming and pharmaceuticals had opposite effects on phytoplankton. In the winter experiment, the effects were much weaker and were limited to a positive effect of warming on phytoplankton biomass. Overall, we show that pharmaceuticals can exacerbate the effects of climate warming in freshwater ecosystems, especially during the warm season. Our results demonstrate the utility of community-level studies across seasons for risk assessment of multiple emerging stressors in freshwater ecosystems.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Clima , Fitoplancton , Zooplancton , Lagos , Preparaciones Farmacéuticas
4.
Aquat Toxicol ; 264: 106707, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37806025

RESUMEN

Sertraline is an environmental pollutant which received magnified scientific attention due to its global presence in waters. Adverse effects on feeding, reproduction and other traits were observed mostly in unstressed aquatic organisms. Chronic stress, however, induces significant physiological changes, and the effects of sertraline in stressed fish may differ from those observed in non-stressed individuals. The current laboratory study addresses this gap by repeatedly monitoring the individual aggression of chronically stressed juvenile chub (Squalius cephalus L.) using the non-reversing mirror test at an environmental sertraline concentration of 0.022 g/L every three to four days for a period of 39 days. Specifically, it was hypothesized that the level and repeatability of aggressiveness would be (i) correlated with the concentration of sertraline/norsertraline in the fish brain; (ii) linked to the individual brain metabolomic profile described by LC-HRMS analyses; (iii) related to the lunar cycle. Sertraline led to an increase in fish aggression and more repeatable/consistent behaviour compared to control fish. While the level of sertraline in the brain did not correlate with aggressiveness, aggressive responses increased with higher norsertraline concentration. The observed aggressive behaviour also varied depending on the individual metabolomic profile of the brain. The behavioural outcome and metabolic change in fish brain may indicate that sertraline has demonstrated neuroprotective effects by reducing cortisol release. It is possible that fish exposed to sertraline could suffer a blunted stress response under the chronic stressors in the wild. Aggressiveness of both treatments evolved in time, revealing a sinusoid-like pattern corresponding to a lunar cycle with a peak of the aggressiveness during the new moon. There is a need for future studies to focus on this relationship to reveal its details and general validity. Our results emphasize that long-term behavioural variability should generally be taken into account in laboratory behavioural studies.


Asunto(s)
Cyprinidae , Contaminantes Químicos del Agua , Animales , Sertralina , Luna , Contaminantes Químicos del Agua/toxicidad , Agresión , Encéfalo
5.
Environ Int ; 178: 107957, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37406370

RESUMEN

Monitoring methodologies reflecting the long-term quality and contamination of surface waters are needed to obtain a representative picture of pollution and identify risk drivers. This study sets a baseline for characterizing chemical pollution in the Danube River using an innovative approach, combining continuous three-months use of passive sampling technology with comprehensive chemical (747 chemicals) and bioanalytical (seven in vitro bioassays) assessment during the Joint Danube Survey (JDS4). This is one of the world's largest investigative surface-water monitoring efforts in the longest river in the European Union, which water after riverbank filtration is broadly used for drinking water production. Two types of passive samplers, silicone rubber (SR) sheets for hydrophobic compounds and AttractSPETM HLB disks for hydrophilic compounds, were deployed at nine sites for approximately 100 days. The Danube River pollution was dominated by industrial compounds in SR samplers and by industrial compounds together with pharmaceuticals and personal care products in HLB samplers. Comparison of the Estimated Environmental Concentrations with Predicted No-Effect Concentrations revealed that at the studied sites, at least one (SR) and 4-7 (HLB) compound(s) exceeded the risk quotient of 1. We also detected AhR-mediated activity, oxidative stress response, peroxisome proliferator-activated receptor gamma-mediated activity, estrogenic, androgenic, and anti-androgenic activities using in vitro bioassays. A significant portion of the AhR-mediated and estrogenic activities could be explained by detected analytes at several sites, while for the other bioassays and other sites, much of the activity remained unexplained. The effect-based trigger values for estrogenic and anti-androgenic activities were exceeded at some sites. The identified drivers of mixture in vitro effects deserve further attention in ecotoxicological and environmental pollution research. This novel approach using long-term passive sampling provides a representative benchmark of pollution and effect potentials of chemical mixtures for future water quality monitoring of the Danube River and other large water bodies.


Asunto(s)
Contaminantes Químicos del Agua , Calidad del Agua , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Antagonistas de Andrógenos , Ecotoxicología , Estrona , Ríos/química
6.
Ecotoxicol Environ Saf ; 260: 115084, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37267780

RESUMEN

Pharmaceutically active compounds are common and increasing in the aquatic environment. Evidence suggests they have adverse effects on non-target organisms, and they are classified as emerging pollutants for a variety of aquatic organisms. To determine the effects of environmentally relevant levels of psychoactive compounds on non-target organisms, we analyzed cardiac and locomotory activity in early developmental stages of marbled crayfish Procambarus virginalis. Responses to sertraline, methamphetamine, and a mixture of citalopram, oxazepam, sertraline, tramadol, venlafaxine, and methamphetamine at a concentration of 1 µg L-1 of each compound were assessed. On day four of exposure, cardiac activity was recorded for 5 min, and on day eight, locomotory activity was recorded for 15 min. There was a significant increase (p < 0.01) in heart rate in methamphetamine-exposed and Mix-exposed juveniles compared to the unexposed control and there was significant difference (p < 0.01) in proportion of time (activity %) was observed with sertraline-exposed, whereas velocity, and distance moved did not significantly differ (p > 0.05) in exposed and control animals. These findings revealed that low concentrations of chemicals and their mixtures can modify the physiological state of aquatic animals without outward manifestations (activity, distance moved, and velocity). Aquatic animals can be impacted earlier than is visible, but effects can potentially lead to substantial changes in populations and in ecosystem processes. Additional research to investigate chemical combinations, exposure systems, and organism physiological and molecular responses may provide evidence of broad impact of environmental pharmaceuticals.


Asunto(s)
Metanfetamina , Contaminantes Químicos del Agua , Animales , Astacoidea/fisiología , Ecosistema , Sertralina , Metanfetamina/farmacología , Locomoción , Contaminantes Químicos del Agua/farmacología
7.
Sci Total Environ ; 892: 164594, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37270002

RESUMEN

Personal care products have various organic ultraviolet filters (UV filters) in their composition to increase protection against ultraviolet radiation. Some of these products also contain insect repellents in their formulations. Consequently, these compounds reach freshwater ecosystems, exposing aquatic organisms to a cocktail of anthropogenic contaminants. In this study, the joint effects of two most frequently detected UV filters (Benzophenone - 3 (BP3) and Enzacamene (4-MBC)) and joint effects of BP3 combined with an insect repellent (N, N diethyl-3-methylbenzamide - DEET) were evaluated using life-history traits of the aquatic midge Chironomus riparius such as emergence rate, time to emergence and imagoes body weight. The results showed synergistic effects between BP3 and 4-MBC for C. riparius emergence rate. Regarding the effects of BP3 and DEET mixture, our analysis suggests synergism in the case of males but antagonism in the case of females' time to emergence. Our results imply that the effects of UV filters present in sediments within chemical mixtures are complex and that the evaluation of effects using different life-history traits can yield different patterns of responses. This study demonstrates the importance of assessing the combined effects of pollutants used/found concomitantly in aquatic systems for a more accurate risk assessment, as individual chemical testing can underestimate the toxicity of organic UV filters.


Asunto(s)
Chironomidae , Repelentes de Insectos , Contaminantes Químicos del Agua , Animales , Femenino , Masculino , Larva , Repelentes de Insectos/toxicidad , DEET/toxicidad , Rayos Ultravioleta , Ecosistema , Protectores Solares/toxicidad , Contaminantes Químicos del Agua/toxicidad , Benzofenonas/toxicidad
8.
Aquat Toxicol ; 259: 106479, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37146511

RESUMEN

Methamphetamine (MEA) is commonly detected in municipal wastewater. It causes imbalances in the system of neurotransmitters as well as several other adverse effects on human health. The aim of this study was to investigate bioconcentration and depuration rates at an environmentally relevant concentration of 1 µg·L-1 in Aeshna cyanea nymphs exposed to MEA for six days followed by three days of depuration. The metabolomes of nymphs sampled during exposure and depuration were compared using non-targeted screening. Concurrently, a behavioural experiment was run to evaluate the effect of MEA on movement. Since most samples were below the limits of quantification (LOQs) - MEA was quantified in only four out of the 87 samples and only during the first 24 h of exposure at concentrations at LOQ level - we estimated maximal possible bioconcentration factor (BCF) on 0.63 using the LOQ. An MEA metabolite - amphetamine - was not detected in any sample at levels above their LOQs. From 247 up to 1458 significant down- and up-regulated metabolite signals (p ≤ 0.05) were detected by non-targeted screening during initial times of exposure and depuration. Numbers of significant down- and/or up-regulated signals in metabolomes (p ≤ 0.05) calculated for particular sampling times possibly correlated with the size of the effect on movement recorded at the same times. In the MEA treatment, movement was not significantly greater during exposure (p > 0.05) but was significantly lower during depuration (p < 0.05). This study shows how MEA acts on dragonfly nymphs, an ecologically important group of aquatic insects with a high trophic level.


Asunto(s)
Metanfetamina , Odonata , Contaminantes Químicos del Agua , Animales , Humanos , Metanfetamina/toxicidad , Bioacumulación , Contaminantes Químicos del Agua/toxicidad , Metaboloma
9.
Animals (Basel) ; 13(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37174501

RESUMEN

The response of parasite communities to aquatic contamination has been shown to vary with both type of pollutant and parasite lifestyle. In this semi-experimental study, we examined uptake of pharmaceutical compounds in common carp (Cyprinus carpio L.) restocked from a control pond to a treatment pond fed with organic pollution from a sewage treatment plant and assessed changes in parasite community composition and fish biometric parameters. The parasite community of restocked fish changed over the six-month exposure period, and the composition of pharmaceutical compounds in the liver and brain was almost the same as that in fish living in the treatment pond their whole life. While fish size and weight were significantly higher in both treatment groups compared to the control, condition indices, including condition factor, hepatosomatic index, and splenosomatic index, were significantly higher in control fish. Parasite diversity and species richness decreased at the polluted site, alongside a significant increase in the abundance of a single parasite species, Gyrodactylus sprostonae. Oviparous monogeneans of the Dactylogyridae and Diplozoidae families and parasitic crustaceans responded to pollution with a significant decrease in abundance, the reduction in numbers most likely related to the sensitivity of their free-living stages to pollution.

10.
Ecotoxicol Environ Saf ; 259: 115012, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37209570

RESUMEN

Personal care products, including organic UV filters, are considered emerging contaminants, with their toxic effects being a concern in recent decades. UV filters continually enter surface waters via wastewater and human activity. Despite the presence of organic UV filters in the freshwater environment, little is known of their impact on aquatic biota. In this study, we evaluated the cardiac and locomotor responses of signal crayfish Pacifastacus leniusculus exposed to environmentally relevant concentrations of either 2-Phenylbenzimidazole-5-sulfonic acid (PBSA, 3 µg/L) or 5-Benzoyl-4-hydroxy-2-methoxybenzenesulfonic acid (BP4, 2.5 µg/L). Specimens exposed to the tested compounds for 30 min exhibited significantly greater changes in distance moved and time active than did unexposed controls. Significant differences of mean heart rate change compared to control were detected in both PBSA and BP4 experimental groups. Such behavior and physiological alterations demonstrate ecological effects of personal care products with the tested sunscreen compounds even with a short exposure. Evidence of the consequences of organic UV filters on aquatic organisms is scarce and is an important topic for future research.


Asunto(s)
Contaminantes Químicos del Agua , Animales , Humanos , Contaminantes Químicos del Agua/análisis , Astacoidea/fisiología , Aguas Residuales , Organismos Acuáticos , Protectores Solares/toxicidad
11.
Sci Total Environ ; 878: 163167, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37003339

RESUMEN

Methamphetamine (METH) is a concerning drug of abuse that produces strong psychostimulant effects. The use of this substance, along with the insufficient removal in the sewage treatment plants, leads to its occurrence in the environment at low concentrations. In this study, brown trout (Salmo trutta fario) were exposed to 1 µg/L of METH as environmental relevant concentration for 28 days in order to elucidate the complex effects resulting from the drug, including behaviour, energetics, brain and gonad histology, brain metabolomics, and their relations. Trout exposed to METH displayed lowered activity as well as metabolic rate (MR), an altered morphology of brain and gonads as well as changes in brain metabolome when compared to controls. Increased activity and MR were correlated to an increased incidence of histopathology in gonads (females - vascular fluid and gonad staging; males - apoptotic spermatozoa and peritubular cells) in exposed trout compared to controls. Higher amounts of melatonin in brain were detected in exposed fish compared to controls. Tyrosine hydroxylase expression in locus coeruleus was related to the MR in exposed fish, but not in the control. Brain metabolomics indicated significant differences in 115 brain signals between control and METH exposed individuals, described by the coordinates within the principal component analyses (PCA) axes. These coordinates were subsequently used as indicators of a direct link between brain metabolomics, physiology, and behaviour - as activity and MR varied according to their values. Exposed fish showed an increased MR correlated with the metabolite position in PC1 axes, whereas the control had proportionately lower MR and PC1 coordinates. Our findings emphasize the possible complex disturbances in aquatic fauna on multiple interconnected levels (metabolism, physiology, behaviour) as a result of the presence of METH in aquatic environments. Thus, these outcomes can be useful in the development of AOP's (Adverse Outcome Pathways).


Asunto(s)
Metanfetamina , Contaminantes Químicos del Agua , Animales , Femenino , Masculino , Metanfetamina/toxicidad , Contaminantes Químicos del Agua/metabolismo , Gónadas , Trucha/fisiología , Metaboloma
12.
Sci Total Environ ; 864: 161071, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36565860

RESUMEN

An upscaled passive sampler variant (diffusive hydrogel-based passive sampler; HPS) based on diffusive gradients in thin films for polar organic compounds (o-DGT) with seven times higher surface area (22.7 cm2) than a typical o-DGT sampler (3.14 cm2) was tested in several field studies. HPS performance was tested in situ within a calibration study in the treated effluent of a municipal wastewater treatment plant and in a verification study in the raw municipal wastewater influent. HPS sampled integratively for up to 14 days in the effluent, and 8 days in the influent. Sampling rates (Rs) were derived for 44 pharmaceuticals and personal care products, 3 perfluoroalkyl substances, 2 anticorrosives, and 21 pesticides and metabolites, ranging from 6 to 132 mL d-1. Robustness and repeatability of HPS deteriorated after exposures longer than 14 days due to microbial and physical damage of the diffusive agarose layer. In situ Rs values for the HPS can be applied to estimate the aqueous concentration of the calibrated polar organic compounds in wastewater within an uncertainty factor of four. When accepting this level of accuracy, the HPS can be applied for monitoring trends of organic micropollutants in wastewater.

13.
Environ Pollut ; 315: 120338, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36209932

RESUMEN

Determining pharmaceutical levels in fish plasma represents an increasingly valuable approach for environmental assessments of pharmaceuticals. These fish plasma observations are compared to human therapeutic plasma doses because of the high evolutionary conservation of many drug targets among vertebrates. In the present study, we initially identified highly variable information regarding plasma sampling practices in the literature and then tested the hypothesis that fish plasma levels of selected pharmaceuticals and per- and polyfluoroalkyl substances (PFASs) would not change with time to process samples from the field. After common carp were placed in a wastewater-fed pond for one month, we immediately sampled fish plasma nonlethally in the field or after transferring fish to clean water and held them under these conditions for either 3 or 20 h. We then quantitated pharmaceuticals in water, and pharmaceuticals and PFASs in plasma by LC-MSMS. Whereas plasma levels of most pharmaceuticals decreased even after 3 h that fish spent in clean water, plasma concentrations of the PFASs examined here remained stable over 20 h. Collectively, our examination of these time-dependent sampling approaches and associated findings highlight the importance of appropriate and consistent sampling for bioaccumulation studies, biomonitoring activities, and aquaculture product safety evaluations.


Asunto(s)
Carpas , Fluorocarburos , Contaminantes Químicos del Agua , Animales , Humanos , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Agua , Preparaciones Farmacéuticas , Monitoreo del Ambiente
14.
Environ Pollut ; 309: 119715, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35809709

RESUMEN

Surface water quality monitoring programs have been developed to examine traditional contaminants, such as persistent organic pollutants (POPs). However, urbanization, which is increasing around the world, is increasing discharge of treated wastewater and raw sewage in many regions. Pharmaceuticals and their metabolites represent typical markers of such trajectories in urbanization. We selected an ongoing monitoring program, which was designed for routine surveillance of nonionizable POPs in different aquatic matrices, to examine the occurrence of 67 pharmaceuticals and their metabolites in water and multiple bioindicator matrices: benthic invertebrates, juvenile fish, and adult fish (plasma and muscle tissue) from ten river systems with varying levels of watershed development. In addition, we placed zebra mussels and passive samplers in situ for a fixed period. A statistically significant relationship between pharmaceutical levels in passive samplers and biota was found for caged zebra mussels and benthic invertebrates, while only a few pharmaceuticals were identified in fish matrices. Invertebrates, which have received relatively limited study for pharmaceutical bioaccumulation, accumulated more pharmaceuticals than fish, up to thirty different substances. The highest concentration was observed for sertraline in zebra mussels and telmisartan in benthic invertebrates (83 and 31 ng/g ww, respectively). Our results across diverse study systems indicate that ongoing surface water quality monitoring programs, which were originally designed for traditional organic pollutants, need to be revised to account for bioaccumulation dynamics of pharmaceuticals and other ionizable contaminants. Aquatic monitoring programs routinely examine accumulation of nonionizable organic pollutants; however, we identified that these efforts need to be revised to account for bioaccumulation of ionizable contaminants, which reached higher levels in invertebrates than in fish.


Asunto(s)
Contaminantes Químicos del Agua , Animales , Monitoreo Biológico , Monitoreo del Ambiente , Peces/metabolismo , Invertebrados/metabolismo , Preparaciones Farmacéuticas/metabolismo , Ríos , Contaminantes Químicos del Agua/análisis
15.
Water Res ; 220: 118651, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35635925

RESUMEN

Pharmaceutical and illicit drug residues in sewage sludge may present important risks following direct application to agricultural soils, potentially resulting in uptake by plants. Leaching/desorption tests were performed on different types of stabilized sewage sludge originating from multiple treatment technologies in the Slovak Republic. Acid rain and base-rich condition of soil with different pH conditions were simulated to model the effect of widely varying pH (pH 2, 4, 7, 9, and 12) on the leaching/desorption of pharmaceuticals and illicit drugs. Twenty-nine of 93 target analytes were found above the limit of quantification in sludge or associated leachates. Total desorbed amounts of pharmaceuticals and illicit drugs ranged from 810 to 4000 µg/kg, and 110 to 3600 µg/kg of the dry mass of anaerobic and aerobic sludge, respectively. Desorbed fractions were calculated as these values are normalized to initial sludge concentration and, therefore, were more suitable for qualitative description of the behavior of individual compounds. Using principal component analysis, qualitative analysis of the desorbed fraction confirmed the differences among sludge types, pharmaceuticals, and desorption pH. Desorbed fractions could not be related to the octanol/water distribution coefficient. Desorbed fractions also did not reflect the expected ionization of studied molecules unless converted into their relative values. Generally, the lowest mobility was observed within the environmentally relevant pH range of 4-9, and high pH generally resulted in high desorption, especially in anaerobically stabilized sludges.


Asunto(s)
Drogas Ilícitas , Contaminantes del Suelo , Concentración de Iones de Hidrógeno , Aguas del Alcantarillado/química , Suelo , Contaminantes del Suelo/análisis
16.
Environ Pollut ; 303: 119117, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35276249

RESUMEN

Treated wastewater ponds (TWPs) serve as recipients and passive tertiary treatment mediators for recycled water. These nutrient-rich habitats are increasingly utilised in aquaculture, nevertheless multiple loads of various contaminants with adverse effects on aquatic fauna, including fish, have been recorded. In the present study, we investigated the effects of fish transfer in response to altered levels of pollution on liver metabolic profiles and tissue-specific oxidative stress biomarkers during short- and long-term exposure. In a field experiment, common carp (Cyprinus carpio) originating in severely polluted TWP were restocked after one year to a reference pond with a background pollutant concentration typical of the regional river. In contrast, fish that originated in the reference pond were restocked to TWP. Fish were sampled 0, 7, 14, 60, and 180 days after restocking and fish liver, kidney, intestine, and gill tissues were subjected to biomarker analysis. Pharmaceutically active compounds (PhACs) and metabolic profiles were determined in fish liver using liquid chromatography high-resolution mass spectrometry (LC-HRMS). Fish transferred from reference to polluted pond increased the antioxidant response and absorbed PhACs into metabolism within seven days. Fish liver metabolic profiles were shifted rapidly, but after 180 days to a lesser extent than profiles in fish already adapted in polluted water. Restocked fish from polluted to reference pond eliminated PhACs during the short phase within 14 days, and the highest antioxidant response accompanied the depuration process. Numerous elevated metabolic compounds persisted in such exposed fish for at least 60 days. The period of two weeks was suggested as sufficient for PhACs depuration, but more than two months after restocking is needed for fish to stabilise their metabolism. This study contributed to determining the safe handling with marketed fish commonly restocked to wastewaters and clarified that water pollution irreversibly altered fish metabolic profile.


Asunto(s)
Carpas , Contaminantes Químicos del Agua , Animales , Antioxidantes/metabolismo , Carpas/metabolismo , Hígado/metabolismo , Metaboloma , Estrés Oxidativo , Aguas Residuales/análisis , Agua/análisis , Contaminantes Químicos del Agua/análisis , Contaminación del Agua/análisis
17.
J Hazard Mater ; 421: 126712, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34388919

RESUMEN

Aquaculture is increasing at the global scale, and beneficial reuse of wastewater is becoming crucial in some regions. Here we selected a unique tertiary treatment system for study over a one-year period. This experimental ecosystem-based approach to effluent management included a treated wastewater pond (TWP), which receives 100% effluent from a wastewater treatment plant, and an aquaculture pond (AP) that receives treated water from the TWP for fish production. We examined the fate of a wide range of pharmaceutically active compounds (PhACs) in this TWP-AP system and a control pond fed by river water using traditional grab sampling and passive samplers. We then employed probabilistic approaches to examine exposure hazards. Telmisartan, carbamazepine, diclofenac and venlafaxine, exceeded ecotoxicological predicted no effect concentrations in influent wastewater to the TWP, but these water quality hazards were consistently reduced following treatment in the TWP-AP system. In addition, both grab and passive sampling approaches resulted in similar occurrence patterns of studied compounds, which highlights the potential of POCIS use for water monitoring. Based on the approach taken here, the TWP-AP system appears useful as a tertiary treatment step to reduce PhACs and decrease ecotoxicological and antibiotic resistance water quality hazards prior to beneficial reuse in aquaculture.


Asunto(s)
Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Animales , Acuicultura , Ecosistema , Monitoreo del Ambiente , Estanques , Aguas Residuales/análisis , Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
18.
Ecotoxicol Environ Saf ; 228: 112973, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34794023

RESUMEN

Wastewater contains a wealth of information about the inhabitants of cities. Wastewater-based epidemiology (WBE) has become an effective tool for monitoring public health by analyzing various biomarkers (e.g., chemicals and microorganisms) in wastewater. This way, the estimation of pharmaceuticals' consumption behavior and/or illicit drugs can be calculated. However, monitoring consumption alone is not the only option. If we consider wastewater as a statistical representation of the population's health, medical information can be derived. In this work, we used data from 15 different wastewater treatment plants in Slovak Republic to explore correlations between the use of typical pharmaceuticals and illicit drugs. The analysis was based on the wastewater monitoring data from four years (2016-2019), and 68 different compounds were taken into account. One of the strongest correlations found was between Antihyperlipidemics and Antihypertensives, with Pearson's correlation coefficient of 0.82. This type of analysis within the WBE represents a new potential as an additional source of information for the pharmaceutical, medical and government sectors in assessing health risk factors in the population. Such an evaluation method has even a great potential for artificial intelligence and machine learning for calculating health risk factors together with other sources of data.

19.
Ecotoxicol Environ Saf ; 227: 112944, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34715502

RESUMEN

Traces of psychoactive substances have been found in freshwaters globally. Fish are chronically exposed to pollution at low concentrations. The changes of aggressive behaviour of chub (Squalius cephalus) were determined under the exposure to four psychoactive compounds (sertraline, citalopram, tramadol, methamphetamine) at environmentally relevant concentrations of 1 µg/L for 42 days. We tested whether (A) the behavioural effect of compounds varies within a single species; (B) there is a correlation between the individual brain concentration of the tested pollutants and fish aggression using the novel analysis of pollutants in brain; and (C) there is detectable threshold to effective pollutant concentration in brain. Behaviour and pollutant concentrations in brain were determined repeatedly (1st, 7th, 21st, 42nd and 56th days), including a two-week-long depuration period. The effect of particular compounds varied. Citalopram and methamphetamine generally increased the fish aggression, while no such effect was found after exposure to tramadol or sertraline. The longitudinal analysis showed an aggression increase after depuration, indicating the presence of withdrawal effects in methamphetamine- and tramadol-exposed fish. The analysis of pollutant concentration in brain revealed a positive linear relationship of citalopram concentration and aggression, while no such effect was detected for other compounds and/or their metabolites. Structural break analyses detected concentration thresholds of citalopram (1 and 3 ng/g) and sertraline (1000 ng/g) in brain tissue, from which a significant effect on behaviour was manifested. While the effect of sertraline was not detected using traditional approaches, there was a reduction in aggression after considering its threshold concentration in the brain. Our results suggest that pursuing the concentration threshold of psychoactive compounds can help to reduce false negative results and provide more realistic predictions on behavioural outcomes in freshwater environments, especially in the case of compounds with bioaccumulation potential such as sertraline.


Asunto(s)
Cyprinidae , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Agresión , Animales , Agua Dulce , Contaminantes Químicos del Agua/toxicidad
20.
J Exp Biol ; 224(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34229347

RESUMEN

Illicit drug abuse presents pervasive adverse consequences for human societies around the world. Illicit drug consumption also plays an unexpected role in contamination of aquatic ecosystems that receive wastewater discharges. Here, we show that methamphetamine, considered as one of the most important global health threats, causes addiction and behavior alteration of brown trout Salmo trutta at environmentally relevant concentrations (1 µg l-1). Altered movement behavior and preference for methamphetamine during withdrawal were linked to drug residues in fish brain tissues and accompanied by brain metabolome changes. Our results suggest that emission of illicit drugs into freshwater ecosystems causes addiction in fish and modifies habitat preferences with unexpected adverse consequences of relevance at the individual and population levels. As such, our study identifies transmission of human societal problems to aquatic ecosystems.


Asunto(s)
Metanfetamina , Contaminantes Químicos del Agua , Animales , Ecosistema , Humanos , Metanfetamina/efectos adversos , Trucha , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA