Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Parasite ; 30: 52, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38015008

RESUMEN

Metabarcoding is a powerful tool to detect classical, and well-known "long-branch" Microsporidia in environmental samples. Several primer pairs were developed to target these unique microbial parasites, the majority of which remain undetected when using general metabarcoding primers. Most of these Microsporidia-targeting primer pairs amplify fragments of different length of the small subunit ribosomal RNA (SSU-rRNA) gene. However, we lack a broad comparison of the efficacy of those primers. Here, we conducted in silico PCRs with three short-read (which amplify a few-hundred base pairs) and two long-read (which amplify over a thousand base pairs) metabarcoding primer pairs on a variety of publicly available Microsporidia sensu lato SSU-rRNA gene sequences to test which primers capture most of the Microsporidia diversity. Our results indicate that the primer pairs do result in slight differences in inferred richness. Furthermore, some of the reverse primers are also able to bind to microsporidian subtaxa beyond the classical Microsporidia, which include the metchnikovellidan Amphiamblys spp., the chytridiopsid Chytridiopsis typographi and the "short-branch" microsporidian Mitosporidium daphniae.


Title: Comparaison des amorces ciblant les Microsporidies pour le séquençage de l'ADN environnemental. Abstract: Le métabarcoding est un outil puissant pour détecter les microsporidies classiques et bien connues à « longues branches ¼ dans les échantillons environnementaux. Plusieurs paires d'amorces ont été développées pour cibler ces parasites microscopiques exceptionnels, dont la majorité restent indétectables lors de l'utilisation d'amorces générales de métabarcoding. La plupart de ces paires d'amorces ciblant les microsporidies amplifient des fragments de différentes longueurs du gène de la petite sous-unité de l'ARN ribosomal (SSU-rRNA). Cependant, nous manquons d'une comparaison générale de l'efficacité de ces amorces. Ici, pour tester quelles amorces capturent la plus grande partie de la diversité des microsporidies, nous avons réalisé des PCR in silico avec trois paires d'amorces de métabarcoding à lecture courte (qui amplifient quelques centaines de paires de bases) et deux paires d'amorces de métabarcoding à lecture longue (qui amplifient plus d'un millier de bases), sur une variété de séquences du gène SSU-rRNA de Microsporidia sensu lato accessibles au public. Nos résultats indiquent que les paires d'amorces entraînent de légères différences dans la richesse déduite. En outre, certaines des amorces inverses sont également capables de se lier à des sous-taxons de microsporidies au-delà des Microsporidia classiques, notamment les Metchnikovellidae Amphiamblys spp., le Chytridiopsida Chytridiopsis typographi et la microsporidie à « branches courtes ¼ Mitosporidium daphniae.


Asunto(s)
ADN Ambiental , Microsporidios , Animales , Microsporidios/genética , Análisis de Secuencia de ADN , Filogenia
2.
PLoS Pathog ; 19(8): e1011560, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37603557

RESUMEN

The microsporidian genus Nosema is primarily known to infect insects of economic importance stimulating high research interest, while other hosts remain understudied. Nosema granulosis is one of the formally described Nosema species infecting amphipod crustaceans, being known to infect only two host species. Our first aim was to characterize Nosema spp. infections in different amphipod species from various European localities using the small subunit ribosomal DNA (SSU) marker. Second, we aimed to assess the phylogenetic diversity, host specificity and to explore the evolutionary history that may explain the diversity of gammarid-infecting Nosema lineages by performing a phylogenetic reconstruction based on RNA polymerase II subunit B1 (RPB1) gene sequences. For the host species Gammarus balcanicus, we also analyzed whether parasites were in excess in females to test for sex ratio distortion in relation with Nosema infection. We identified Nosema spp. in 316 individuals from nine amphipod species being widespread in Europe. The RPB1-based phylogenetic reconstruction using newly reported sequences and available data from other invertebrates identified 39 haplogroups being associated with amphipods. These haplogroups clustered into five clades (A-E) that did not form a single amphipod-infecting monophyletic group. Closely related sister clades C and D correspond to Nosema granulosis. Clades A, B and E might represent unknown Nosema species infecting amphipods. Host specificity seemed to be variable with some clades being restricted to single hosts, and some that could be found in several host species. We show that Nosema parasite richness in gammarid hosts is much higher than expected, illustrating the advantage of the use of RPB1 marker over SSU. Finally, we found no hint of sex ratio distortion in Nosema clade A infecting G. balcanicus. This study shows that Nosema spp. are abundant, widespread and diverse in European gammarids. Thus, Nosema is as diverse in aquatic as in terrestrial hosts.


Asunto(s)
Anfípodos , Nosema , Humanos , Femenino , Animales , Nosema/genética , Anfípodos/genética , Filogenia , Agua Dulce
3.
Sci Rep ; 13(1): 9474, 2023 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301923

RESUMEN

In lotic freshwater ecosystems, the drift or downstream movement of animals (e.g., macroinvertebrates) constitutes a key dispersal pathway, thus shaping ecological and evolutionary patterns. There is evidence that macroinvertebrate drift may be modulated by parasites. However, most studies on parasite modulation of host drifting behavior have focused on acanthocephalans, whereas other parasites, such as microsporidians, have been largely neglected. This study provides new insight into possible seasonal and diurnal modulation of amphipod (Crustacea: Gammaridae) drift by microsporidian parasites. Three 72 h drift experiments were deployed in a German lowland stream in October 2021, April, and July 2022. The prevalence and composition of ten microsporidian parasites in Gammarus pulex clade E varied seasonally, diurnally, and between drifting and stationary specimens of G. pulex. Prevalence was generally higher in drifting amphipods than in stationary ones, mainly due to differences in host size. However, for two parasites, the prevalence in drift samples was highest during daytime suggesting changes in host phototaxis likely related to the parasite's mode of transmission and site of infection. Alterations in drifting behavior may have important implications for G. pulex population dynamics and microsporidians' dispersal. The underlying mechanisms are more complex than previously thought.


Asunto(s)
Anfípodos , Microsporidios , Parásitos , Animales , Anfípodos/parasitología , Ecosistema , Estaciones del Año , Interacciones Huésped-Parásitos , Crustáceos
4.
Environ Toxicol Chem ; 42(9): 1946-1959, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37283208

RESUMEN

Parasites can affect their hosts in various ways, and this implies that parasites may act as additional biotic stressors in a multiple-stressor scenario, resembling conditions often found in the field if, for example, pollutants and parasites occur simultaneously. Therefore, parasites represent important modulators of host reactions in ecotoxicological studies when measuring the response of organisms to stressors such as pollutants. In the present study, we introduce the most important groups of parasites occurring in organisms commonly used in ecotoxicological studies ranging from laboratory to field investigations. After briefly explaining their life cycles, we focus on parasite stages affecting selected ecotoxicologically relevant target species belonging to crustaceans, molluscs, and fish. We included ecotoxicological studies that consider the combination of effects of parasites and pollutants on the respective model organism with respect to aquatic host-parasite systems. We show that parasites from different taxonomic groups (e.g., Microsporidia, Monogenea, Trematoda, Cestoda, Acanthocephala, and Nematoda) clearly modulate the response to stressors in their hosts. The combined effects of environmental stressors and parasites can range from additive, antagonistic to synergistic. Our study points to potential drawbacks of ecotoxicological tests if parasite infections of test organisms, especially from the field, remain undetected and unaddressed. If these parasites are not detected and quantified, their physiological effects on the host cannot be separated from the ecotoxicological effects. This may render this type of ecotoxicological test erroneous. In laboratory tests, for example to determine effect or lethal concentrations, the presence of a parasite can also have a direct effect on the concentrations to be determined and thus on the subsequently determined security levels, such as predicted no-effect concentrations. Environ Toxicol Chem 2023;42:1946-1959. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Contaminantes Ambientales , Nematodos , Parásitos , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos , Peces , Contaminantes Químicos del Agua/toxicidad
5.
Trends Parasitol ; 39(6): 461-474, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37061443

RESUMEN

Anthropogenic stressors are causing fundamental changes in aquatic habitats and to the organisms inhabiting these ecosystems. Yet, we are still far from understanding the diverse responses of parasites and their hosts to these environmental stressors and predicting how these stressors will affect host-parasite communities. Here, we provide an overview of the impacts of major stressors affecting aquatic ecosystems in the Anthropocene (habitat alteration, global warming, and pollution) and highlight their consequences for aquatic parasites at multiple levels of organisation, from the individual to the community level. We provide directions and ideas for future research to better understand responses to stressors in aquatic host-parasite systems.


Asunto(s)
Parásitos , Animales , Parásitos/fisiología , Ecosistema , Organismos Acuáticos
6.
Sci Total Environ ; 872: 162196, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36781140

RESUMEN

Our capacity to predict trajectories of ecosystem degradation and recovery is limited, especially when impairments are caused by multiple stressors. Recovery may be fast or slow and either complete or partial, sometimes result in novel ecosystem states or even fail completely. Here, we introduce the Asymmetric Response Concept (ARC) that provides a basis for exploring and predicting the pace and magnitude of ecological responses to, and release from, multiple stressors. The ARC holds that three key mechanisms govern population, community and ecosystem trajectories. Stress tolerance is the main mechanism determining responses to increasing stressor intensity, whereas dispersal and biotic interactions predominantly govern responses to the release from stressors. The shifting importance of these mechanisms creates asymmetries between the ecological trajectories that follow increasing and decreasing stressor intensities. This recognition helps to understand multiple stressor impacts and to predict which measures will restore communities that are resistant to restoration.


Asunto(s)
Ecosistema , Ríos
7.
Sci Total Environ ; 863: 160727, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36502976

RESUMEN

Marine bioinvasions are of increasing attention due to their potential of causing ecological and economic loss. The seaweed Gracilaria vermiculophylla has recently invaded the Baltic Sea, where, under certain conditions, it was found to outcompete the native alga Fucus vesiculosus. Parasites of grazers and temperature are among the potential factors which might indirectly modulate the interactions between these co-occurring algae through their single and combined effects on grazing rates. We tested the temperature and parasitism effects on the feeding of the gastropod Littorina littorea on F. vesiculosus vs. G. vermiculophylla. Uninfected and trematode-infected gastropods were exposed to 10, 16, 22, and 28 °C for 4 days while fed with either algae. Faeces production was determined as a proxy for grazing rate, and HSP70 expression, glycogen and lipid concentrations were used to assess the gastropod's biochemical condition. Gracilaria vermiculophylla was grazed more than F. vesiculosus. Trematode infection significantly enhanced faeces production, decreased glycogen concentrations, and increased lipid concentrations in the gastropod. Warming significantly affected glycogen and lipid concentrations, with glycogen peaking at 16 °C and lipids at 22 °C. Although not significant, warming and trematode infection increased HSP70 levels. Increased faeces production in infected snails and higher faeces production by L. littorea fed with G. vermiculophylla compared to those which fed on F. vesiculosus, suggest parasitism as an important indirect modulator of the interaction between these algae. The changes in the gastropod's biochemical condition indicate that thermal stress induced the mobilization of energy reserves, suggesting a possible onset of compensatory metabolism. Finally, glycogen decrease in infected snails compared to uninfected ones might make them more susceptible to thermal stress.


Asunto(s)
Algas Marinas , Caracoles , Animales , Temperatura , Homeostasis , Lípidos
8.
Sci Total Environ ; 859(Pt 2): 160185, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36395831

RESUMEN

The overflow of stormwater retention basins during intense and prolonged precipitation events may result in the direct input of particulate pollutants and remobilization of already sedimented particle-bound pollutants to receiving freshwater bodies. Particle-bound pollutants may cause adverse effects on aquatic biota, particularly sediment dwellers. Therefore, we investigated the sediment pollution load of a stream connected to the outfalls of two stormwater basins to determine the impact of the basins' discharges on the metal and organic pollutant content of the sediment. Also, the possible adverse effects of the pollutant load on benthic dwellers were evaluated in sediment toxicity tests with Lumbriculus variegatus and the effects on its growth, reproduction and the biomarkers catalase, acetylcholinesterase and metallothionein were analyzed. The results showed that the retention basins contained the highest load of pollutants. The pollutant load in the stream did not show a clear pollution pattern from the inlets. However, metal enrichment ratios revealed contamination with Cu, Pb and Zn with Pb and Zn above threshold effect concentrations in all sites. Ecotoxicity results showed that the retention basin samples were the most toxic compared to sediment from the stream. Exposure experiments with the stream sediment did not show considerable effects on reproduction, catalase activity and metallothionein concentration. However, modest inhibitions of growth and activity of acetylcholinesterase were detected. Based on the observed results, it cannot be concluded that overflows of the retention basin are responsible for the pollutant contents downstream of their inlet. Other sources that were not considered in this study, such as diffuse input, historic pollution and point sources further upstream as well as along the stream, are likely the major contributors of pollutant load in the sediment of the studied transects of the stream. Additionally, the observed results in the stormwater basin sediment further highlight their importance in retaining particle-bound pollutants and preventing ecotoxicological effects from receiving surface water bodies.


Asunto(s)
Contaminantes Ambientales , Oligoquetos , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Agua , Acetilcolinesterasa , Ecotoxicología , Metales/análisis , Sedimentos Geológicos
9.
Sci Total Environ ; 858(Pt 3): 159946, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36343811

RESUMEN

Although parasitism is one of the most common species interactions in nature, the role of parasites in their hosts' thermal tolerance is often neglected. This study examined the ability of the trematode Podocotyle atomon to modulate the feeding and stress response of Gammarus locusta towards temperature. To accomplish this, infected and uninfected females and males of Gammarus locusta were exposed to temperatures (2, 6, 10, 14, 18, 22, 26, 30 °C) for six days. Shredding (change in food biomass) and defecation rates (as complementary measure to shredding rate) were measured as proxies for feeding activity. Lipid and glycogen concentrations (energy reserves), catalase (oxidative stress indicator), and phenoloxidase (an immunological response in invertebrates) were additionally measured. Gammarid survival was optimal at 10 °C as estimated by the linear model and was unaffected by trematode infection. Both temperature and sex influenced the direction of infection effect on phenoloxidase. Infected females presented lower phenoloxidase activity than uninfected females at 14 and 18 °C, while males remained unaffected by infection. Catalase activity increased at warmer temperatures for infected males and uninfected females. Higher activity of this enzyme at colder temperatures occurred only for infected females. Infection decreased lipid content in gammarids by 14 %. Infected males had significantly less glycogen than uninfected, while infected females showed the opposite trend. The largest infection effects were observed for catalase and phenoloxidase activity. An exacerbation of catalase activity in infected males at warmer temperatures might indicate (in the long-term) unsustainable, overwhelming, and perhaps lethal conditions in a warming sea. A decrease in phenoloxidase activity in infected females at warmer temperatures might indicate a reduction in the potential for fighting opportunistic infections. Results highlight the relevance of parasites and host sex in organismal homeostasis and provide useful insights into the organismal stability of a widespread amphipod in a warming sea.


Asunto(s)
Anfípodos , Temperatura , Trematodos , Lípidos , Anfípodos/parasitología , Anfípodos/fisiología , Conducta Alimentaria , Masculino , Femenino , Animales , Glucógeno/metabolismo , Estrés Fisiológico
10.
BMC Genomics ; 23(1): 816, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482300

RESUMEN

BACKGROUND: Freshwaters are exposed to multiple anthropogenic stressors, leading to habitat degradation and biodiversity decline. In particular, agricultural stressors are known to result in decreased abundances and community shifts towards more tolerant taxa. However, the combined effects of stressors are difficult to predict as they can interact in complex ways, leading to enhanced (synergistic) or decreased (antagonistic) response patterns. Furthermore, stress responses may remain undetected if only the abundance changes in ecological experiments are considered, as organisms may have physiological protective pathways to counteract stressor effects. Therefore, we here used transcriptome-wide sequencing data to quantify single and combined effects of elevated fine sediment deposition, increased salinity and reduced flow velocity on the gene expression of the amphipod Gammarus fossarum in a mesocosm field experiment. RESULTS: Stressor exposure resulted in a strong transcriptional suppression of genes involved in metabolic and energy consuming cellular processes, indicating that G. fossarum responds to stressor exposure by directing energy to vitally essential processes. Treatments involving increased salinity induced by far the strongest transcriptional response, contrasting the observed abundance patterns where no effect was detected. Specifically, increased salinity induced the expression of detoxification enzymes and ion transporter genes, which control the membrane permeability of sodium, potassium or chloride. Stressor interactions at the physiological level were mainly antagonistic, such as the combined effect of increased fine sediment and reduced flow velocity. The compensation of the fine sediment induced effect by reduced flow velocity is in line with observations based on specimen abundance data. CONCLUSIONS: Our findings show that gene expression data provide new mechanistic insights in responses of freshwater organisms to multiple anthropogenic stressors. The assessment of stressor effects at the transcriptomic level and its integration with stressor effects at the level of specimen abundances significantly contribute to our understanding of multiple stressor effects in freshwater ecosystems.


Asunto(s)
Ecosistema
11.
Parasitology ; 149(13): 1729-1736, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36117283

RESUMEN

We conducted a molecular survey on microsporidian diversity in different lineages (operational taxonomic units = OTUs) of Asellus aquaticus from 30 sites throughout Europe. Host body length was determined, and DNA was extracted from host tissue excluding the intestine and amplified by microsporidian-specific primers. In total, 247 A. aquaticus specimens were analysed from which 26.7% were PCR-positive for microsporidians, with significantly more infections in larger individuals. Prevalence ranged between 10 and 90%. At 9 sites, no microsporidians were detected. A significant relationship was found between the frequency of infected individuals and habitat type, as well as host OTU. The lowest proportion of infected individuals was detected in spring-habitats (8.7%, n = 46) and the highest in ponds (37.7%, n = 53). Proportion of infected individuals among host OTUs A, D and J was 31.7, 21.7 and 32.1%, respectively. No infections were detected in OTU F. Our results are, however, accompanied by a partially low sample size, as only a minimum of 5 individuals was available at a few locations. Overall, 17 different microsporidian molecular taxonomic units (MICMOTUs) were distinguished with 5 abundant isolates (found in 4­17 host individuals) while the remaining 12 MICMOTUs were "rare" and found only in 1­3 host individuals. No obvious spatio-genetic pattern could be observed. The MICMOTUs predominantly belonged to Nosematida and Enterocytozoonida. The present study shows that microsporidians in A. aquaticus are abundant and diverse but do not show obvious patterns related to host genetic lineages or geography.


Asunto(s)
Isópodos , Microsporidios , Humanos , Animales , Microsporidios/genética , Cartilla de ADN , Ecosistema , Geografía , Filogenia
12.
Dis Aquat Organ ; 150: 125-130, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35924796

RESUMEN

The release of ornamental pets outside their native range can directly or indirectly impact the recipient community, e.g. via the co-introduction of associated pathogens. However, studies on parasites associated with non-native species, in particular freshwater decapods, have focused mainly on a limited set of pathogens. Here we provide data for the first time on microsporidian parasites of the non-native ornamental shrimp Neocaridina davidi, collected in a stream in Germany. Furthermore, we confirm an ongoing range expansion of the warm-adapted N. davidi from thermally polluted colder water. In the investigated shrimps, the microsporidian parasite Enterocytozoon hepatopenaei and an unknown microsporidian isolate were detected, raising concerns about their transmission potential and pathogenicity on native crustacean species.


Asunto(s)
Decápodos , Enterocytozoon , Microsporidios , Penaeidae , Animales , Enterocytozoon/genética , Penaeidae/parasitología , Reacción en Cadena de la Polimerasa/veterinaria , Ríos
13.
Parasitology ; : 1-10, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35485747

RESUMEN

The present study provides new insight into suitable microsporidian­host associations. It relates regional and continental-wide host specialization in microsporidians infecting amphipods to degraded and recovering habitats across 2 German river catchments. It provides a unique opportunity to infer the persistence of parasites following anthropogenic disturbance and their establishment in restored rivers. Amphipods were collected in 31 sampling sites with differing degradation and restoration gradients. Specimens were morphologically (hosts) and molecularly identified (host and parasites). Amphipod diversity and abundance, microsporidian diversity, host phylogenetic specificity and continental-wide ß-specificity were investigated and related to each other and/or environmental variables. Fourteen microsporidian molecular operational taxonomic units (MOTUs), mainly generalist parasites, infecting 6 amphipod MOTUs were detected, expanding the current knowledge on the host range by 17 interactions. There was no difference in microsporidian diversity and host specificity among restored and near-natural streams (Boye) or between those located in urban and rural areas (Kinzig). Similarly, microsporidian diversity was generally not influenced by water parameters. In the Boye catchment, host densities did not influence microsporidian MOTU richness across restored and near-natural sites. High host turnover across the geographical range suggests that neither environmental conditions nor host diversity plays a significant role in the establishment into restored areas. Host diversity and environmental parameters do not indicate the persistence and dispersal of phylogenetic host generalist microsporidians in environments that experienced anthropogenic disturbance. Instead, these might depend on more complex mechanisms such as the production of resistant spores, host switching and host dispersal acting individually or conjointly.

14.
Aquat Toxicol ; 247: 106178, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35489172

RESUMEN

Physiologically based pharmacokinetic (PBPK) models have been applied to simulate the absorption, distribution, metabolism, and elimination of various toxicants in fish. This approach allows for considering metal accumulation in intestinal parasites. Unlike "semi" physiologically-based models developed for metals, metal accumulation in fish was characterised based on metal-specific parameters (the fraction in blood plasma and the tissue-blood partition coefficient) and physiological characteristics of the fish (the blood flow and the tissue weight) in our PBPK model. In the model, intestinal parasites were considered a sink of metals from the host intestine. The model was calibrated with data for the system of the chub Squalius cephalus and the acanthocephalan Pomphorhynchus tereticolliis. Metal concentrations in this fish-parasite system were monitored in Ag and Co treatments in duplicate during a 48-day exposure phase (Ag and Co were added to tap water at concentrations of 1 and 2 µg/L, respectively) and a 51-day depuration phase. Their concentrations in the gills increased during the exposure phase and decreased in the depuration phase. A similar pattern was observed for Ag concentrations in other chub organs, while a relatively stable pattern for Co indicates regulations in the accumulation of essential metals by chubs. The metals were taken up by the acanthocephalans at similar rate constants. These results indicate that metal availability to parasites, which is determined by the internal distribution and fate, is critical to metal accumulation in the acanthocephalans. The high concentration of Ag in the liver as well as the high rate of Ag excretion from the liver to the intestine might contribute to higher concentrations of metals in the bile complexes in the intestine, which are available to the parasites, but not to the reabsorption by the host intestine. The opposite pattern might explain the lower availability of Co to the acanthocephalans.


Asunto(s)
Acantocéfalos , Cyprinidae , Enfermedades de los Peces , Helmintiasis Animal , Parásitos , Contaminantes Químicos del Agua , Acantocéfalos/metabolismo , Animales , Cyprinidae/metabolismo , Monitoreo del Ambiente/métodos , Helmintiasis Animal/metabolismo , Helmintiasis Animal/parasitología , Metales/metabolismo , Contaminantes Químicos del Agua/toxicidad
15.
Ecotoxicol Environ Saf ; 236: 113474, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35390685

RESUMEN

Modern wastewater treatment plants cannot completely remove pollutants. Often, effluents entering the aquatic environment still contain micropollutants such as pharmaceuticals or pesticides, which may impose adverse effects on aquatic biota. At the same time, a large proportion of free-living aquatic species are known to be infected with parasites, which raises the question of interactions between environmental stressors (such as micropollutants) and parasite infection. We chose the freshwater amphipod Gammarus fossarum (Koch, 1835) as a test organism to investigate potential pollutant-parasite interactions. This gammarid is frequently used in ecotoxicological tests and is also commonly infected with larvae of the acanthocephalan parasite species Polymorphus minutus (Zeder, 1800) Lühe, 1911. We exposed infected and uninfected specimens of G. fossarum to conventionally-treated wastewater and river water in a 22-day flow channel experiment. The test organisms' response was measured as mortality rates, concentrations or activities of five biomarkers, and overall locomotor activity. No significant differences were found between mortality rates of different exposure conditions. Contrastingly, three biomarkers (phenoloxidase activity, glycogen, and lipid concentrations) showed a significant increase in infected gammarids, while the effect of the water type was insignificant. Infected gammarids also showed a significantly higher locomotor activity in both water types. Our results suggest that the response of G. fossarum during the exposure experiments was mainly driven by parasite infection. This implies that parasites may act as additional biotic stressors in multiple stressor scenarios, and therefore, might play an important role when measuring the response of organisms to chemical stressors. Future ecotoxicological studies and assessments thus should consider parasite infection as an additional test parameter.


Asunto(s)
Acantocéfalos , Anfípodos , Enfermedades Parasitarias , Contaminantes Químicos del Agua , Acantocéfalos/fisiología , Anfípodos/fisiología , Animales , Biomarcadores , Interacciones Huésped-Parásitos , Locomoción , Aguas Residuales/toxicidad , Agua , Contaminantes Químicos del Agua/toxicidad
16.
Sci Total Environ ; 828: 154549, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35302011

RESUMEN

Traditional forms of agriculture have created and preserved heterogeneous landscapes characterized by semi-natural meadows and pastures, which have high conversation value for biodiversity. Landscapes in Central and Eastern European countries with traditional agriculture are a stronghold for pollinators, butterflies and amphibians, which have declined in other parts of Europe. Despite different landscape structures, agriculture-associated pesticide exposure in streams can be similarly high as in Western Europe. This raises the question whether the heterogeneous landscape can buffer a temporary water quality decline by agriculture. We investigated the influence of landscape heterogeneity and water quality, in particular pesticide exposure, on macroinvertebrate communities in 19 small streams in Central Romania. We sampled the macroinvertebrate community, assessed the ecosystem function of leaf litter decomposition and analyzed the parasite prevalence in Baetis sp. and Gammarus balcanicus. No association between pesticide toxicity towards macroinvertebrates and several macroinvertebrate metrics was found. However, the level of pesticide toxicity was generally high, constituting a rather short gradient, and the pesticide indicator SPEARpesticides implied pesticide-driven community change in all sites. Landscape heterogeneity and forested upstream sections were among the most important drivers for the macroinvertebrate metrics, indicating increased dispersal and recolonization success. Agricultural land use in the catchment was negatively associated with vulnerable macroinvertebrate taxa such as Ephemeroptera, Plecoptera and Trichoptera. G. balcanicus dominated the shredder taxa and its abundance was positively associated with the pesticide indicator SPEARpesticides. Parasite prevalence in G. balcanicus increased with extensive land use (pastures and forests), whereas it decreased with arable land. Our results suggest that heterogeneous landscapes with structures of low-intensive land use may buffer the effects of agricultural land use and facilitate dispersal and recolonization processes of pesticide-affected macroinvertebrate communities.


Asunto(s)
Mariposas Diurnas , Plaguicidas , Agricultura , Animales , Ecosistema , Monitoreo del Ambiente , Invertebrados , Plaguicidas/análisis , Plaguicidas/toxicidad , Hojas de la Planta/química , Ríos/química
17.
Sci Rep ; 12(1): 1174, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35064187

RESUMEN

To predict global warming impacts on parasitism, we should describe the thermal tolerance of all players in host-parasite systems. Complex life-cycle parasites such as trematodes are of particular interest since they can drive complex ecological changes. This study evaluates the net response to temperature of the infective larval stage of Himasthla elongata, a parasite inhabiting the southwestern Baltic Sea. The thermal sensitivity of (i) the infected and uninfected first intermediate host (Littorina littorea) and (ii) the cercarial emergence, survival, self-propelling, encystment, and infection capacity to the second intermediate host (Mytilus edulis sensu lato) were examined. We found that infection by the trematode rendered the gastropod more susceptible to elevated temperatures representing warm summer events in the region. At 22 °C, cercarial emergence and infectivity were at their optimum while cercarial survival was shortened, narrowing the time window for successful mussel infection. Faster out-of-host encystment occurred at increasing temperatures. After correcting the cercarial emergence and infectivity for the temperature-specific gastropod survival, we found that warming induces net adverse effects on the trematode transmission to the bivalve host. The findings suggest that gastropod and cercariae mortality, as a tradeoff for the emergence and infectivity, will hamper the possibility for trematodes to flourish in a warming ocean.


Asunto(s)
Aclimatación , Organismos Acuáticos/fisiología , Gastrópodos/parasitología , Trematodos/patogenicidad , Infecciones por Trematodos/veterinaria , Animales , Cercarias/aislamiento & purificación , Cercarias/patogenicidad , Cercarias/fisiología , Calentamiento Global , Interacciones Huésped-Parásitos , Calor/efectos adversos , Mytilus edulis , Estaciones del Año , Trematodos/aislamiento & purificación , Trematodos/fisiología , Infecciones por Trematodos/diagnóstico , Infecciones por Trematodos/parasitología , Infecciones por Trematodos/transmisión
18.
Chemosphere ; 286(Pt 3): 131930, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34426290

RESUMEN

A toxicokinetic-toxicodynamic model was constructed to delineate the exposure-response causality. The model could be used: to predict metal accumulation considering the influence of water chemistry and biotic ligand characteristics; to simulate the dynamics of subcellular partitioning considering metabolism, detoxification, and elimination; and to predict chronic toxicity as represented by biomarker responses from the concentration of metals in the fraction of potentially toxic metal. The model was calibrated with data generated from an experiment in which the Zebra mussel Dreissena polymorpha was exposed to Cu at nominal concentrations of 25 and 50 µg/L and with varied Na+ concentrations in water up to 4.0 mmol/L for 24 days. Data used in the calibration included physicochemical conditions of the exposure environment, Cu concentrations in subcellular fractions, and oxidative stress-induced responses, i.e. glutathione-S-transferase activity and lipid peroxidation. The model explained the dynamics of subcellular Cu partitioning and the effect mechanism reasonably well. With a low affinity constant for Na + binding to Cu2+ uptake sites, Na + had limited influence on Cu2+ uptake at low Na+ concentrations in water. Copper was taken up into the metabolically available pool (MAP) at a largely higher rate than into the cellular debris. Similar Cu concentrations were found in these two fractions at low exposure levels, which could be attributed to sequestration pathways (metabolism, detoxification, and elimination) in the MAP. However, such sequestration was inefficient as shown by similar Cu concentrations in detoxified fractions with increasing exposure level accompanied by the increasing Cu concentration in the MAP.


Asunto(s)
Dreissena , Contaminantes Químicos del Agua , Animales , Cobre/toxicidad , Ligandos , Metales , Contaminantes Químicos del Agua/toxicidad
19.
Aquat Toxicol ; 241: 106015, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34753109

RESUMEN

A toxicokinetic-toxicodynamic model based on subcellular metal partitioning is presented for simulating chronic toxicity of copper (Cu) from the estimated concentration in the fraction of potentially toxic metal (PTM). As such, the model allows for considering the significance of different pathways of metal sequestration in predicting metal toxicity. In the metabolically available pool (MAP), excess metals above the metabolic requirements and the detoxification and elimination capacity form the PTM fraction. The reversibly and irreversibly detoxified fractions were distinguished in the biologically detoxified compartment, while responses of organisms were related to Cu accumulation in the PTM fraction. The model was calibrated using the data on Cu concentrations in subcellular fractions and physiological responses measured by the glutathione S-transferase activity and the lipid peroxidation level during 24-day exposure of the Zebra mussel to Cu at concentrations of 25 and 50 µg/L and varying Na+ concentrations up to 4.0 mmol/L. The model was capable of explaining dynamics in the subcellular Cu partitioning, e.g. the trade-off between elimination and detoxification as well as the dependence of net accumulation, elimination, detoxification, and metabolism on the exposure level. Increases in the net accumulation rate in the MAP contributed to increased concentrations of Cu in this fraction. Moreover, these results are indicative of ineffective detoxification at high exposure levels and spill-over effects of detoxification.


Asunto(s)
Dreissena , Contaminantes Químicos del Agua , Animales , Cobre/toxicidad , Metales , Toxicocinética , Contaminantes Químicos del Agua/toxicidad
20.
Environ Pollut ; 287: 117645, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34426373

RESUMEN

Chronic toxicity of copper (Cu) at sublethal levels is associated with ionoregulatory disturbance and oxidative stress. These factors were considered in a toxicokinetic-toxicodynamic model in the present study. The ionoregulatory disturbance was evaluated by the activity of the Na+/K+-ATPase enzyme (NKA), while oxidative stress was presented by lipid peroxidation (LPO) and glutathione-S-transferase (GST) activity. NKA activity was related to the binding of Cu2+ and Na + to NKA. LPO and GST activity were linked with the simulated concentration of unbound Cu. The model was calibrated using previously reported data and empirical data generated when zebra mussels were exposed to Cu. The model clearly demonstrated that Cu might inhibit NKA activity by reducing the number of functional pump sites and the limited Cu-bound NKA turnover rate. An ordinary differential equation was used to describe the relationship between the simulated concentration of unbound Cu and LPO/GST activity. Although this method could not explain the fluctuations in these biomarkers during the experiment, the measurements were within the confidence interval of estimations. Model simulation consistently shows non-significant differences in LPO and GST activity at two exposure levels, similar to the empirical observation.


Asunto(s)
Bivalvos , Contaminantes Químicos del Agua , Animales , Cobre/análisis , Cobre/toxicidad , Homeostasis , Peroxidación de Lípido , Estrés Oxidativo , Toxicocinética , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...