Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Parasit Vectors ; 15(1): 233, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35761349

RESUMEN

BACKGROUND: Fatty acids are the building blocks of complex lipids essential for living organisms. In mosquitoes, fatty acids are involved in cell membrane production, energy conservation and expenditure, innate immunity, development and reproduction. Fatty acids are synthesized by a multifunctional enzyme complex called fatty acid synthase (FAS). Several paralogues of FAS were found in the Aedes aegypti mosquito. However, the molecular characteristics and expression of some of these paralogues have not been investigated. METHODS: Genome assemblies of Ae. aegypti were analyzed, and orthologues of human FAS was identified. Phylogenetic analysis and in silico molecular characterization were performed to identify the functional domains of the Ae. aegypti FAS (AaFAS). Quantitative analysis and loss-of-function experiments were performed to determine the significance of different AaFAS transcripts in various stages of development, expression following different diets and the impact of AaFAS on dengue virus, serotype 2 (DENV2) infection and transmission. RESULTS: We identified seven putative FAS genes in the Ae. aegypti genome assembly, based on nucleotide similarity to the FAS proteins (tBLASTn) of humans, other mosquitoes and invertebrates. Bioinformatics and molecular analyses suggested that only five of the AaFAS genes produce mRNA and therefore represent complete gene models. Expression levels of AaFAS varied among developmental stages and between male and female Ae. aegypti. Quantitative analyses revealed that expression of AaFAS1, the putative orthologue of the human FAS, was highest in adult females. Transient knockdown (KD) of AaFAS1 did not induce a complete compensation by other AaFAS genes but limited DENV2 infection of Aag2 cells in culture and the midgut of the mosquito. CONCLUSION: AaFAS1 is the predominant AaFAS in adult mosquitoes. It has the highest amino acid similarity to human FAS and contains all enzymatic domains typical of human FAS. AaFAS1 also facilitated DENV2 replication in both cell culture and in mosquito midguts. Our data suggest that AaFAS1 may play a role in transmission of dengue viruses and could represent a target for intervention strategies.


Asunto(s)
Aedes , Infecciones por Arbovirus , Dengue , Ácido Graso Sintasas , Aedes/genética , Aedes/virología , Animales , Virus del Dengue , Ácido Graso Sintasas/genética , Ácidos Grasos , Femenino , Humanos , Proteínas de Insectos/genética , Masculino , Mosquitos Vectores/virología , Filogenia , Replicación Viral
2.
Curr Protoc Microbiol ; 59(1): e118, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33030816

RESUMEN

Tick-borne viruses cause thousands of cases of disease worldwide every year. Specific countermeasures to many tick-borne viruses are not commercially available. Very little is known regarding tick-virus interactions and increasing this knowledge can lead to potential targets for countermeasure development. Virus infection of ex vivo organ cultures from ticks can provide an approach to identify susceptible cell types of tissue to infection. Additionally, these organ cultures can be used for functional genomic studies to pinpoint tick-specific genes involved in the virus lifecycle. Provided here are step-by-step procedures to set up basic tick organ cultures in combination with virus infection and/or functional genomic studies. These procedures can be adapted for future use to characterize other tick-borne pathogen infections as well as tick-specific biological processes. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Loading 96-well plates with gelfoam substrate Basic Protocol 2: Step-by-step aseptic dissection of unfed female/male Ixodes scapularis ticks for multiple organs Basic Protocol 3: Step-by-step aseptic dissection of fed female Ixodes scapularis ticks to remove salivary glands Basic Protocol 4: Metabolic viability analyses of tick organ cultures Basic Protocol 5: Virus infection of tick organ cultures Basic Protocol 6: Functional RNA interference analyses using tick organ cultures.


Asunto(s)
Disección/métodos , Ixodes/virología , Técnicas de Cultivo de Órganos/métodos , Animales , Femenino , Masculino , Interferencia de ARN , Glándulas Salivales , Enfermedades por Picaduras de Garrapatas
3.
PLoS Negl Trop Dis ; 14(10): e0008683, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33017410

RESUMEN

Infected Ixodes scapularis (black-legged tick) transmit a host of serious pathogens via their bites, including Borrelia burgdorferi, Babesia microti, and tick-borne flaviviruses (TBFVs), such as Powassan virus (POWV). Although the role of female I. scapularis ticks in disease transmission is well characterized, the role of male ticks is poorly understood. Because the pathogens are delivered in tick saliva, we studied the capacity of male salivary glands (SGs) to support virus replication. Ex vivo cultures of SGs from unfed male I. scapularis were viable for more than a week and maintained the characteristic tissue architecture of lobular ducts and acini. When SG cultures were infected with the TBFVs Langat virus (LGTV) or POWV lineage II (deer tick virus), the production of infectious virus was demonstrated. Using a green fluorescent protein-tagged LGTV and confocal microscopy, we demonstrated LGTV infection within SG acinus types II and III. The presence of LGTV in the acini and lobular ducts of the cultures was also shown via immunohistochemistry. Furthermore, the identification by in situ hybridization of both positive and negative strand LGTV RNA confirmed that the virus was indeed replicating. Finally, transmission electron microscopy of infected SGs revealed virus particles packaged in vesicles or vacuoles adjacent to acinar lumina. These studies support the concept that SGs of male I. scapularis ticks support replication of TBFVs and may play a role in virus transmission, and further refine a useful model system for developing countermeasures against this important group of pathogens.


Asunto(s)
Infecciones por Flavivirus/veterinaria , Ixodes/virología , Glándulas Salivales/virología , Animales , Virus de la Encefalitis Transmitidos por Garrapatas/crecimiento & desarrollo , Infecciones por Flavivirus/virología , Masculino , Microscopía , Microscopía Electrónica de Transmisión , Microscopía Fluorescente
4.
Viruses ; 12(3)2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197325

RESUMEN

The unfolded protein response (UPR) maintains protein-folding homeostasis in the endoplasmic reticulum (ER) and has been implicated as both beneficial and detrimental to flavivirus infection. Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), a sensor of the UPR, is commonly associated with antiviral effects during mosquito-borne flavivirus (MBFV) infection, but its relation to tick-borne flavivirus (TBFV) infection remains largely unexplored. In this study, we identified changes in UPR and autophagic activity during Langat virus (LGTV) infection. LGTV robustly activated UPR and altered autophagic flux. Knockdown of endogenous PERK in human cells resulted in increased LGTV replication, but not that of closely related Powassan virus (POWV). Finally, on examining changes in protein levels of components associated with UPR and autophagy in the absence of PERK, we could show that LGTV-infected cells induced UPR but did not lead to expression of C/EBP homologous protein (CHOP), an important downstream transcription factor of multiple stress pathways. From these data, we hypothesize that LGTV can antagonize other kinases that target eukaryotic initiation factor 2α (eIF2α), but not PERK, implicating PERK as a potential mediator of intrinsic immunity. This effect was not apparent for POWV, a more pathogenic TBFV, suggesting it may be better equipped to mitigate the antiviral effects of PERK.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Encefalitis Transmitida por Garrapatas/metabolismo , Encefalitis Transmitida por Garrapatas/virología , Transducción de Señal , Respuesta de Proteína Desplegada , Replicación Viral , eIF-2 Quinasa/metabolismo , Autofagia , Biomarcadores , Línea Celular , Supervivencia Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Marcación de Gen , Humanos , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo
5.
Nat Microbiol ; 4(12): 2369-2382, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31384002

RESUMEN

Flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), cause severe human disease. Co-opting cellular factors for viral translation and viral genome replication at the endoplasmic reticulum is a shared replication strategy, despite different clinical outcomes. Although the protein products of these viruses have been studied in depth, how the RNA genomes operate inside human cells is poorly understood. Using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS), we took an RNA-centric viewpoint of flaviviral infection and identified several hundred proteins associated with both DENV and ZIKV genomic RNA in human cells. Genome-scale knockout screens assigned putative functional relevance to the RNA-protein interactions observed by ChIRP-MS. The endoplasmic-reticulum-localized RNA-binding proteins vigilin and ribosome-binding protein 1 directly bound viral RNA and each acted at distinct stages in the life cycle of flaviviruses. Thus, this versatile strategy can elucidate features of human biology that control the pathogenesis of clinically relevant viruses.


Asunto(s)
Infecciones por Flavivirus/virología , Flavivirus/genética , Flavivirus/fisiología , ARN Viral/genética , Sistemas CRISPR-Cas , Proteínas Portadoras , Línea Celular , Virus del Dengue/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Flavivirus/patogenicidad , Técnicas de Inactivación de Genes , Interacciones Huésped-Patógeno/genética , Humanos , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Replicación Viral , Virus Zika/genética
6.
mBio ; 10(1)2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30696737

RESUMEN

The Ixodes scapularis tick transmits a number of pathogens, including tick-borne flaviviruses (TBFVs). In the United States, confirmed human infections with the Powassan virus (POWV) TBFV have a fatality rate of ∼10% and are increasing in incidence. Tick salivary glands (SGs) serve as an organ barrier to TBFV transmission, and little is known regarding the location of TBFV infection in SGs from fed ticks. Previous studies showed I. scapularis vanin (VNN) involved with TBFV infection of I. scapularis ISE6 embryonic cells, suggesting a potential role for this gene. The overall goal of this study was to use SG cultures to compare data on TBFV biology in SGs from fully engorged, replete (fed) ticks and from unfed ticks. TBFV multiplication was higher in SGs from fed ticks than in those from unfed ticks. Virus-like particles were observed only in granular acini of SGs from unfed ticks. The location of TBFV infection of SGs from fed ticks was observed in cells lining lobular ducts and trachea but not observed in acini. Transcript knockdown of VNN decreased POWV multiplication in infected SG cultures from both fed and unfed ticks. This work was the first to identify localization of TBFV multiplication in SG cultures from a fed tick and a tick transcript important for POWV multiplication in the tick SG, an organ critical for TBFV transmission. This research exemplifies the use of SG cultures in deciphering TBFV biology in the tick and as a translational tool for screening and identifying potential tick genes as potential countermeasure targets.IMPORTANCE Tick-borne flaviviruses (TBFVs) are responsible for more than 15,000 human disease cases each year, and Powassan virus lineage 2 (POWV-L2) deer tick virus has been a reemerging threat in North America over the past 20 years. Rapid transmission of TBFVs in particular emphasizes the importance of preventing tick bites, the difficulty in developing countermeasures to prevent transmission, and the importance of understanding TBFV infection in tick salivary glands (SGs). Tick blood feeding is responsible for phenomenal physiological changes and is associated with changes in TBFV multiplication within the tick and in SGs. Using SG cultures from Ixodes scapularis female ticks, the primary aims of this study were to identify cellular localization of virus-like particles in acini of infected SGs from fed and unfed ticks, localization of TBFV infection in infected SGs from fed ticks, and a tick transcript (with associated metabolic function) involved in POWV-L2 infection in SG cultures.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/crecimiento & desarrollo , Infecciones por Flavivirus/veterinaria , Ixodes/virología , Glándulas Salivales/virología , Animales , Infecciones por Flavivirus/virología , Microscopía , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Tráquea/virología
7.
Nat Commun ; 9(1): 5350, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30559387

RESUMEN

Sexual transmission and persistence of Zika virus (ZIKV) in the male reproductive tract (MRT) poses new challenges for controlling virus outbreaks and developing live-attenuated vaccines. To elucidate routes of ZIKV dissemination in the MRT, we here generate microRNA-targeted ZIKV clones that lose the infectivity for (1) the cells inside seminiferous tubules of the testis, or (2) epithelial cells of the epididymis. We trace ZIKV dissemination in the MRT using an established mouse model of ZIKV pathogenesis. Our results support a model in which ZIKV infects the testis via a hematogenous route, while infection of the epididymis can occur via two routes: (1) hematogenous/lymphogenous and (2) excurrent testicular. Co-targeting of the ZIKV genome with brain-, testis-, and epididymis-specific microRNAs restricts virus infection of these organs, but does not affect virus-induced protective immunity in mice and monkeys. These defined alterations of ZIKV tropism represent a rational design of a safe live-attenuated ZIKV vaccine.


Asunto(s)
Epidídimo/virología , Túbulos Seminíferos/virología , Infección por el Virus Zika/transmisión , Virus Zika/genética , Virus Zika/patogenicidad , Animales , Chlorocebus aethiops , Modelos Animales de Enfermedad , Genoma Viral/genética , Macaca mulatta , Masculino , Ratones , MicroARNs/genética , Células Vero , Virus Zika/inmunología , Infección por el Virus Zika/patología , Infección por el Virus Zika/veterinaria
8.
ACS Infect Dis ; 4(3): 247-256, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29473735

RESUMEN

Each year there are more than 15 000 cases of human disease caused by infections with tick-borne viruses (TBVs). These illnesses occur worldwide and can range from very mild illness to severe encephalitis and hemorrhagic fever. Although TBVs are currently identified as neglected vector-borne pathogens and receive less attention than mosquito-borne viruses, TBVs are expanding into new regions, and infection rates are increasing. Furthermore, effective vaccines, diagnostic tools, and other countermeasures are limited. The application of contemporary technologies to TBV infections presents an excellent opportunity to develop improved, effective countermeasures. Experimental tick and mammal models of infection can be used to characterize determinants of infection, transmission, and virulence and to test candidate countermeasures. The use of ex vivo tick cultures in TBV research provides a unique way to look at infection in specific tick organs. Mammal ex vivo organ slice and, more recently, organoid cultures are additional models that can be used to elucidate direct tissue-specific responses to infection. These ex vivo model systems are convenient for testing methods involving transcript knockdown and small molecules under tightly controlled conditions. They can also be combined with in vitro and in vivo studies to tease out possible host factors and potential vaccine or therapeutic candidates. In this brief perspective, we describe how ex vivo cultures can be combined with modern technologies to advance research on TBV infections.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/crecimiento & desarrollo , Técnicas de Cultivo de Órganos/métodos , Virología/métodos , Animales , Mamíferos , Modelos Teóricos
9.
PLoS Pathog ; 14(2): e1006853, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29447265

RESUMEN

We describe the first comprehensive analysis of the midgut metabolome of Aedes aegypti, the primary mosquito vector for arboviruses such as dengue, Zika, chikungunya and yellow fever viruses. Transmission of these viruses depends on their ability to infect, replicate and disseminate from several tissues in the mosquito vector. The metabolic environments within these tissues play crucial roles in these processes. Since these viruses are enveloped, viral replication, assembly and release occur on cellular membranes primed through the manipulation of host metabolism. Interference with this virus infection-induced metabolic environment is detrimental to viral replication in human and mosquito cell culture models. Here we present the first insight into the metabolic environment induced during arbovirus replication in Aedes aegypti. Using high-resolution mass spectrometry, we have analyzed the temporal metabolic perturbations that occur following dengue virus infection of the midgut tissue. This is the primary site of infection and replication, preceding systemic viral dissemination and transmission. We identified metabolites that exhibited a dynamic-profile across early-, mid- and late-infection time points. We observed a marked increase in the lipid content. An increase in glycerophospholipids, sphingolipids and fatty acyls was coincident with the kinetics of viral replication. Elevation of glycerolipid levels suggested a diversion of resources during infection from energy storage to synthetic pathways. Elevated levels of acyl-carnitines were observed, signaling disruptions in mitochondrial function and possible diversion of energy production. A central hub in the sphingolipid pathway that influenced dihydroceramide to ceramide ratios was identified as critical for the virus life cycle. This study also resulted in the first reconstruction of the sphingolipid pathway in Aedes aegypti. Given conservation in the replication mechanisms of several flaviviruses transmitted by this vector, our results highlight biochemical choke points that could be targeted to disrupt transmission of multiple pathogens by these mosquitoes.


Asunto(s)
Aedes/virología , Virus del Dengue/fisiología , Tracto Gastrointestinal/virología , Regulación del Desarrollo de la Expresión Génica , Interacciones Huésped-Patógeno , Metabolismo de los Lípidos , Replicación Viral , Aedes/citología , Aedes/metabolismo , Animales , Células Cultivadas , Ceramidas/química , Ceramidas/metabolismo , Virus del Dengue/crecimiento & desarrollo , Femenino , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/enzimología , Tracto Gastrointestinal/metabolismo , Perfilación de la Expresión Génica , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Metabolómica , Mitocondrias/enzimología , Mitocondrias/metabolismo , Mosquitos Vectores/citología , Mosquitos Vectores/metabolismo , Mosquitos Vectores/virología , Fosforilación Oxidativa , Interferencia de ARN , ARN Viral/metabolismo , Simbiosis , Carga Viral
10.
mBio ; 8(4)2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28830948

RESUMEN

Ixodes scapularis ticks transmit many infectious agents that cause disease, including tick-borne flaviviruses (TBFVs). TBFV infections cause thousands of human encephalitis cases worldwide annually. In the United States, human TBFV infections with Powassan virus (POWV) are increasing and have a fatality rate of 10 to 30%. Additionally, Langat virus (LGTV) is a TBFV of low neurovirulence and is used as a model TBFV. TBFV replication and dissemination within I. scapularis organs are poorly characterized, and a deeper understanding of virus biology in this vector may inform effective countermeasures to reduce TBFV transmission. Here, we describe short-term, I. scapularis organ culture models of TBFV infection. Ex vivo organs were metabolically active for 9 to 10 days and were permissive to LGTV and POWV replication. Imaging and videography demonstrated replication and spread of green fluorescent protein-expressing LGTV in the organs. Immunohistochemical staining confirmed LGTV envelope and POWV protein synthesis within the infected organs. LGTV- and POWV-infected organs produced infectious LGTV and POWV; thus, the ex vivo cultures were suitable for study of virus replication in individual organs. LGTV- and POWV-infected midgut and salivary glands were subjected to double-stranded RNA (dsRNA) transfection with dsRNA to the LGTV 3' untranslated region (UTR), which reduced infectious LGTV and POWV replication, providing a proof-of-concept use of RNA interference in I. scapularis organ cultures to study the effects on TBFV replication. The results contribute important information on TBFV localization within ex vivo I. scapularis organs and provide a significant translational tool for evaluating recombinant, live vaccine candidates and potential tick transcripts and proteins for possible therapeutic use and vaccine development to reduce TBFV transmission.IMPORTANCE Tick-borne flavivirus (TBFV) infections cause neurological and/or hemorrhagic disease in humans worldwide. There are currently no licensed therapeutics or vaccines against Powassan virus (POWV), the only TBFV known to circulate in North America. Evaluating tick vector targets for antitick vaccines directed at reducing TBFV infection within the arthropod vector is a critical step in identifying efficient approaches to controlling TBFV transmission. This study characterized infection of female Ixodes scapularis tick organ cultures of midgut, salivary glands, and synganglion with the low-neurovirulence Langat virus (LGTV) and the more pathogenic POWV. Cell types of specific organs were susceptible to TBFV infection, and a difference in LGTV and POWV replication was noted in TBFV-infected organs. This tick organ culture model of TBFV infection will be useful for various applications, such as screening of tick endogenous dsRNA corresponding to potential control targets within midgut and salivary glands to confirm restriction of TBFV infection.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Ixodes/virología , Animales , Virus de la Encefalitis Transmitidos por Garrapatas/patogenicidad , Femenino , Técnicas de Cultivo de Órganos , Proteómica , Interferencia de ARN , ARN Bicatenario , Glándulas Salivales/virología , Replicación Viral
11.
Yale J Biol Med ; 90(2): 291-300, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28656015

RESUMEN

Flaviviruses have an intimate relationship with their host cells, utilizing host proteins during replication. Much of viral genome replication and virion assembly occurs on and within the endoplasmic reticulum (ER). As a cellular protein folding hub, the ER provides an ideal environment for flaviviruses to replicate. Flaviviruses can interact with several ER processes, including the unfolded protein response (UPR), a cellular stress mechanism responsible for managing unfolded protein accumulation and ER stress. The UPR can alter the ER environment in several ways, including increasing ER volume and quantity of available chaperones, both of which can favor viral replication. BiP, a chaperone and master regulator of the UPR, has been demonstrated to play a key role in several flavivirus infections. Here we describe what is known in regard to BiP, its implicated role with flavivirus infection, and what remains to be discovered.


Asunto(s)
Flavivirus/fisiología , Proteínas de Choque Térmico/fisiología , Respuesta de Proteína Desplegada/fisiología , Animales , Chaperón BiP del Retículo Endoplásmico , Infecciones por Flavivirus/metabolismo , Infecciones por Flavivirus/virología , Humanos , Replicación Viral/fisiología
12.
Parasit Vectors ; 10(1): 24, 2017 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-28086865

RESUMEN

BACKGROUND: Tick-borne flaviviruses (TBFs) cause thousands of human cases of encephalitis worldwide each year, with some TBF infections progressing to hemorrhagic fever. TBFs are of medical and veterinary importance and strategies to reduce flavivirus transmission by the tick vector may have significant application. Analyses of the proteome of ISE6 cells derived from the black legged tick, Ixodes scapularis infected with the TBF, Langat virus (LGTV), have provided insights into proteins and cellular processes involved with LGTV infection. METHODS: RNA interference (RNAi)-induced knockdown of transcripts was used to investigate the role of ten tick proteins in the LGTV infection cycle in ISE6 cells. LGTV-infected cells were separately transfected with dsRNA corresponding to each gene of interest and the effect on LGTV genome replication and release of infectious virus was assessed by RT-qPCR and plaque assays, respectively. RESULTS: RNAi-induced knockdown of transcripts for two enzymes that likely function in amino acid, carbohydrate, lipid, terpenoid/polykeytide and vitamin metabolism, and a transcript for one protein of unknown function were associated with decreased replication of the LGTV genome and release of infectious virus from cells. The knockdown of transcripts for five enzymes predicted to function in metabolism, a protein likely associated with folding, sorting and degradation, and a protein of unknown function was associated with a decrease only in the amount of infectious LGTV released from cells. CONCLUSIONS: These data suggest tick proteins potentially associated with metabolism and protein processing may be involved in LGTV infection of ISE6 cells. Our study provides information to begin to elucidate the function of these proteins and identify targets for the development of new interventions aimed at controlling the transmission of TBFs.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Interacciones Huésped-Patógeno , Proteínas de Insectos/metabolismo , Ixodes/virología , Liberación del Virus , Replicación Viral , Animales , Línea Celular , Pruebas Genéticas , Ixodes/genética , Interferencia de ARN
13.
Artículo en Inglés | MEDLINE | ID: mdl-29312896

RESUMEN

Tick-borne flaviviruses (TBFs) affect human health globally. Human vaccines provide protection against some TBFs, and antivirals are available, yet TBF-specific control strategies are limited. Advances in genomics offer hope to understand the viral complement transmitted by ticks, and to develop disruptive, data-driven technologies for virus detection, treatment, and control. The genome assemblies of Ixodes scapularis, the North American tick vector of the TBF, Powassan virus, and other tick vectors, are providing insights into tick biology and pathogen transmission and serve as nucleation points for expanded genomic research. Systems biology has yielded insights to the response of tick cells to viral infection at the transcript and protein level, and new protein targets for vaccines to limit virus transmission. Reverse vaccinology approaches have moved candidate tick antigenic epitopes into vaccine development pipelines. Traditional drug and in silico screening have identified candidate antivirals, and target-based approaches have been developed to identify novel acaricides. Yet, additional genomic resources are required to expand TBF research. Priorities include genome assemblies for tick vectors, "omic" studies involving high consequence pathogens and vectors, and emphasizing viral metagenomics, tick-virus metabolomics, and structural genomics of TBF and tick proteins. Also required are resources for forward genetics, including the development of tick strains with quantifiable traits, genetic markers and linkage maps. Here we review the current state of genomic research on ticks and tick-borne viruses with an emphasis on TBFs. We outline an ambitious 10-year roadmap for research in the "omics era," and explore key milestones needed to accomplish the goal of delivering three new vaccines, antivirals and acaricides for TBF control by 2030.


Asunto(s)
Flavivirus/aislamiento & purificación , Perfilación de la Expresión Génica , Genómica/métodos , Proteómica/métodos , Enfermedades por Picaduras de Garrapatas/transmisión , Garrapatas/virología , Animales , Antivirales/aislamiento & purificación , Antivirales/farmacología , Descubrimiento de Drogas/métodos , Flavivirus/clasificación , Flavivirus/genética , Infecciones por Flavivirus/tratamiento farmacológico , Infecciones por Flavivirus/prevención & control , Infecciones por Flavivirus/transmisión , Infecciones por Flavivirus/virología , Humanos , Enfermedades por Picaduras de Garrapatas/tratamiento farmacológico , Enfermedades por Picaduras de Garrapatas/prevención & control , Enfermedades por Picaduras de Garrapatas/virología , Vacunas Virales/inmunología , Vacunas Virales/aislamiento & purificación
14.
Nat Commun ; 7: 10507, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26856261

RESUMEN

Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing ∼57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick-host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host 'questing', prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent.


Asunto(s)
Anaplasma phagocytophilum , Vectores Arácnidos/genética , Genoma/genética , Ixodes/genética , Canales Iónicos Activados por Ligandos/genética , Animales , Perfilación de la Expresión Génica , Genómica , Enfermedad de Lyme/transmisión , Oocitos , Xenopus laevis
15.
PLoS Negl Trop Dis ; 10(2): e0004180, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26859745

RESUMEN

BACKGROUND: Ticks (Family Ixodidae) transmit a variety of disease causing agents to humans and animals. The tick-borne flaviviruses (TBFs; family Flaviviridae) are a complex of viruses, many of which cause encephalitis and hemorrhagic fever, and represent global threats to human health and biosecurity. Pathogenesis has been well studied in human and animal disease models. Equivalent analyses of tick-flavivirus interactions are limited and represent an area of study that could reveal novel approaches for TBF control. METHODOLOGY/PRINCIPAL FINDINGS: High resolution LC-MS/MS was used to analyze the proteome of Ixodes scapularis (Lyme disease tick) embryonic ISE6 cells following infection with Langat virus (LGTV) and identify proteins associated with viral infection and replication. Maximal LGTV infection of cells and determination of peak release of infectious virus, was observed at 36 hours post infection (hpi). Proteins were extracted from ISE6 cells treated with LGTV and non-infectious (UV inactivated) LGTV at 36 hpi and analyzed by mass spectrometry. The Omics Discovery Pipeline (ODP) identified thousands of MS peaks. Protein homology searches against the I. scapularis IscaW1 genome assembly identified a total of 486 proteins that were subsequently assigned to putative functional pathways using searches against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. 266 proteins were differentially expressed following LGTV infection relative to non-infected (mock) cells. Of these, 68 proteins exhibited increased expression and 198 proteins had decreased expression. The majority of the former were classified in the KEGG pathways: "translation", "amino acid metabolism", and "protein folding/sorting/degradation". Finally, Trichostatin A and Oligomycin A increased and decreased LGTV replication in vitro in ISE6 cells, respectively. CONCLUSIONS/SIGNIFICANCE: Proteomic analyses revealed ISE6 proteins that were differentially expressed at the peak of LGTV replication. Proteins with increased expression following infection were associated with cellular metabolic pathways and glutaminolysis. In vitro assays using small molecules implicate malate dehydrogenase (MDH2), the citrate cycle, cellular acetylation, and electron transport chain processes in viral replication. Proteins were identified that may be required for TBF infection of ISE6 cells. These proteins are candidates for functional studies and targets for the development of transmission-blocking vaccines and drugs.


Asunto(s)
Proteínas de Artrópodos/análisis , Virus de la Encefalitis Transmitidos por Garrapatas/crecimiento & desarrollo , Interacciones Huésped-Patógeno , Ixodes/virología , Proteoma/análisis , Animales , Células Cultivadas , Cromatografía Liquida , Redes y Vías Metabólicas , Espectrometría de Masas en Tándem
16.
PLoS One ; 10(5): e0126823, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25992653

RESUMEN

Dietary fat absorption by the small intestine is a multistep process that regulates the uptake and delivery of essential nutrients and energy. One step of this process is the temporary storage of dietary fat in cytoplasmic lipid droplets (CLDs). The storage and mobilization of dietary fat is thought to be regulated by proteins that associate with the CLD; however, mechanistic details of this process are currently unknown. In this study we analyzed the proteome of CLDs isolated from enterocytes harvested from the small intestine of mice following a dietary fat challenge. In this analysis we identified 181 proteins associated with the CLD fraction, of which 37 are associated with known lipid related metabolic pathways. We confirmed the localization of several of these proteins on or around the CLD through confocal and electron microscopy, including perilipin 3, apolipoprotein A-IV, and acyl-CoA synthetase long-chain family member 5. The identification of the enterocyte CLD proteome provides new insight into potential regulators of CLD metabolism and the process of dietary fat absorption.


Asunto(s)
Grasas de la Dieta/administración & dosificación , Enterocitos/metabolismo , Gotas Lipídicas/metabolismo , Proteoma/metabolismo , Animales , Apolipoproteínas A/metabolismo , Proteínas Portadoras/metabolismo , Coenzima A Ligasas/metabolismo , Enterocitos/ultraestructura , Gotas Lipídicas/ultraestructura , Metabolismo de los Lípidos , Masculino , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Modelos Biológicos , Perilipina-3 , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...