Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1245362, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37964999

RESUMEN

Introduction: Climate change poses significant challenges to agriculture, impacting crop yields and necessitating adaptive strategies in breeding programs. This study investigates the genetic yield progress of wheat varieties in Catalonia, Spain, from 2007 to 2021, and examines the relationship between genetic yield and climate-related factors, such as temperature. Understanding these dynamics is crucial for ensuring the resilience of wheat crops in the face of changing environmental conditions. Methods: Genetic yield progress was assessed using a linear regression function, comparing the average yield changes of newly released wheat varieties to benchmark varieties. Additionally, a quadratic function was employed to model genetic yield progress in winter wheat (WW). The study also analyzed correlations between genetic yield (GY) and normalized values of hectoliter weight (HLW) and the number of grains (NG) for both spring wheat (SW) and WW. Weather data were used to confirm climate change impacts on temperature and its effects on wheat growth and development. Results: The study found that genetic yield was stagnant for SW but increased linearly by 1.31% per year for WW. However, the quadratic function indicated a possible plateau in WW genetic yield progress in recent years. Positive correlations were observed between GY and normalized values of HLW and NG for both SW and WW. Climate change was evident in Catalonia, with temperatures increasing at a rate of 0.050 °C per year. This rise in temperature had detrimental effects on days to heading (DH) and HLW, with reductions observed in both SW and WW for each °C increase in annual minimum and average temperature. Discussion: The findings highlighted the urgent need to address the impact of climate change on wheat cultivation. The stagnation of genetic yield in SW and the potential plateau in WW genetic yield progress call for adaptive measures. Breeding programs should prioritize phenological adjustments, particularly sowing date optimization, to align with the most favorable months of the year. Moreover, efforts should be made to enhance HLW and the number of grains per unit area in new wheat varieties to counteract the negative effects of rising temperatures. This research underscores the importance of ongoing monitoring and adaptation in agricultural practices to ensure yield resilience in the context of a changing climate.

2.
Plants (Basel) ; 12(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38005747

RESUMEN

Monitoring plant growth and development during cultivation to optimize resource use efficiency is crucial to achieve an increased sustainability of agriculture systems and ensure food security. In this study, we compared field monitoring approaches from the macro to micro scale with the aim of developing novel in vivo tools for field phenotyping and advancing the efficiency of drought stress detection at the field level. To this end, we tested different methodologies in the monitoring of tomato growth under different water regimes: (i) micro-scale (inserted in the plant stem) real-time monitoring with an organic electrochemical transistor (OECT)-based sensor, namely a bioristor, that enables continuous monitoring of the plant; (ii) medium-scale (<1 m from the canopy) monitoring through red-green-blue (RGB) low-cost imaging; (iii) macro-scale multispectral and thermal monitoring using an unmanned aerial vehicle (UAV). High correlations between aerial and proximal remote sensing were found with chlorophyll-related indices, although at specific time points (NDVI and NDRE with GGA and SPAD). The ion concentration and allocation monitored by the index R of the bioristor during the drought defense response were highly correlated with the water use indices (Crop Water Stress Index (CSWI), relative water content (RWC), vapor pressure deficit (VPD)). A high negative correlation was observed with the CWSI and, in turn, with the RWC. Although proximal remote sensing measurements correlated well with water stress indices, vegetation indices provide information about the crop's status at a specific moment. Meanwhile, the bioristor continuously monitors the ion movements and the correlated water use during plant growth and development, making this tool a promising device for field monitoring.

3.
Front Plant Sci ; 14: 1254301, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37731983

RESUMEN

An acceleration of the genetic advances of durum wheat, as a major crop for the Mediterranean region, is required, but phenotyping still represents a bottleneck for breeding. This study aims to define durum wheat ideotypes under Mediterranean conditions by selecting the most suitable phenotypic remote sensing traits among different ones informing on characteristics related with leaf pigments/photosynthetic status, crop water status, and crop growth/green biomass. A set of 24 post-green revolution durum wheat cultivars were assessed in a wide set of 19 environments, accounted as the specific combinations of a range of latitudes in Spain, under different management conditions (water regimes and planting dates), through 3 consecutive years. Thus, red-green-blue and multispectral derived vegetation indices and canopy temperature were evaluated at anthesis and grain filling. The potential of the assessed remote sensing parameters alone and all combined as grain yield (GY) predictors was evaluated through random forest regression models performed for each environment and phenological stage. Biomass and plot greenness indicators consistently proved to be reliable GY predictors in all of the environments tested for both phenological stages. For the lowest-yielding environment, the contribution of water status measurements was higher during anthesis, whereas, for the highest-yielding environments, better predictions were reported during grain filling. Remote sensing traits measured during the grain filling and informing on pigment content and photosynthetic capacity were highlighted under the environments with warmer conditions, as the late-planting treatments. Overall, canopy greenness indicators were reported as the highest correlated traits for most of the environments and regardless of the phenological moment assessed. The addition of carbon isotope composition of mature kernels was attempted to increase the accuracies, but only a few were slightly benefited, as differences in water status among cultivars were already accounted by the measurement of canopy temperature.

4.
Front Plant Sci ; 14: 1063983, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077632

RESUMEN

The development of accurate grain yield (GY) multivariate models using normalized difference vegetation index (NDVI) assessments obtained from aerial vehicles and additional agronomic traits is a promising option to assist, or even substitute, laborious agronomic in-field evaluations for wheat variety trials. This study proposed improved GY prediction models for wheat experimental trials. Calibration models were developed using all possible combinations of aerial NDVI, plant height, phenology, and ear density from experimental trials of three crop seasons. First, models were developed using 20, 50 and 100 plots in training sets and GY predictions were only moderately improved by increasing the size of the training set. Then, the best models predicting GY were defined in terms of the lowest Bayesian information criterion (BIC) and the inclusion of days to heading, ear density or plant height together with NDVI in most cases were better (lower BIC) than NDVI alone. This was particularly evident when NDVI saturates (with yields above 8 t ha-1) with models including NDVI and days to heading providing a 50% increase in the prediction accuracy and a 10% decrease in the root mean square error. These results showed an improvement of NDVI prediction models by the addition of other agronomic traits. Moreover, NDVI and additional agronomic traits were unreliable predictors of grain yield in wheat landraces and conventional yield quantification methods must be used in this case. Saturation and underestimation of productivity may be explained by differences in other yield components that NDVI alone cannot detect (e.g. differences in grain size and number).

5.
Data Brief ; 40: 107754, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35005145

RESUMEN

Ideotypic characteristics of durum wheat associated with higher yield under different water and temperature regimes were studied under Mediterranean conditions. The focus of this paper is to provide raw and supplemental data from the research article entitled "Durum wheat ideotypes in Mediterranean environments differing in water and temperature conditions" [1], which aims to define specific durum wheat ideotypes according to their responses to different agronomic conditions. In this context, six modern (i.e. post green revolution) genotypes with contrasting yield performance (i.e. high vs low yield) were grown during two consecutive years under different treatments: (i) winter planting under support-irrigation conditions, (ii) winter planting under rainfed conditions, (iii) late planting under support-irrigation. Trials were conducted at the INIA station of Colmenar de Oreja (Madrid). Different traits were assessed to inform about water status (canopy temperature at anthesis and stable carbon isotope composition (δ13C) of the flag leaf and mature grains), root performance (root traits and the oxygen isotope composition (δ18O) in the stem base water), phenology (days from sowing to heading), nitrogen status/photosynthetic capacity (nitrogen content and stable isotope composition (δ15N) of the flag leaf and mature grain together with the pigment contents and the nitrogen balance index (NBI) of the flag leaf), crop growth (plant height (PH) and the normalized difference vegetation index (NDVI) at anthesis), grain yield and agronomic yield components. For most of the parameters assessed, data analysis demonstrated significant differences among genotypes within each treatment. The level of significance was determined using the Tukey-b test on independent samples, and ideotypes were modelled from the results of principle component analysis. The present data shed light on traits that help to define specific ideotype characteristics that confer genotypic adaptation to a wide range of agronomic conditions produced by variations in planting date, water conditions and season.

6.
J Integr Plant Biol ; 64(2): 592-618, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34807514

RESUMEN

High-throughput crop phenotyping, particularly under field conditions, is nowadays perceived as a key factor limiting crop genetic advance. Phenotyping not only facilitates conventional breeding, but it is necessary to fully exploit the capabilities of molecular breeding, and it can be exploited to predict breeding targets for the years ahead at the regional level through more advanced simulation models and decision support systems. In terms of phenotyping, it is necessary to determined which selection traits are relevant in each situation, and which phenotyping tools/methods are available to assess such traits. Remote sensing methodologies are currently the most popular approaches, even when lab-based analyses are still relevant in many circumstances. On top of that, data processing and automation, together with machine learning/deep learning are contributing to the wide range of applications for phenotyping. This review addresses spectral and red-green-blue sensing as the most popular remote sensing approaches, alongside stable isotope composition as an example of a lab-based tool, and root phenotyping, which represents one of the frontiers for field phenotyping. Further, we consider the two most promising forms of aerial platforms (unmanned aerial vehicle and satellites) and some of the emerging data-processing techniques. The review includes three Boxes that examine specific case studies.


Asunto(s)
Productos Agrícolas , Fitomejoramiento , Productos Agrícolas/genética , Fenotipo
7.
Plant J ; 109(6): 1507-1518, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34951491

RESUMEN

Durum wheat is an important cereal that is widely grown in the Mediterranean basin. In addition to high yield, grain quality traits are of high importance for farmers. The strong influence of climatic conditions makes the improvement of grain quality traits, like protein content, vitreousness, and test weight, a challenging task. Evaluation of quality traits post-harvest is time- and labor-intensive and requires expensive equipment, such as near-infrared spectroscopes or hyperspectral imagers. Predicting not only yield but also important quality traits in the field before harvest is of high value for breeders aiming to optimize resource allocation. Implementation of efficient approaches for trait prediction, such as the use of high-resolution spectral data acquired by a multispectral camera mounted on unmanned aerial vehicles (UAVs), needs to be explored. In this study, we have acquired multispectral image data with an 11-band multispectral camera mounted on a UAV and analyzed the data with machine learning (ML) models to predict grain yield and important quality traits in breeding micro-plots. Combining 11-band multispectral data for 34 cultivars and 16 environments allowed to develop ML models with good prediction capability. Applying the trained models to test sets explained a considerable degree of phenotypic variance with good accuracy showing r squared values of 0.84, 0.69, 0.64, and 0.61 and normalized root mean squared errors of 0.17, 0.07, 0.14, and 0.03 for grain yield, protein content, vitreousness, and test weight, respectively.


Asunto(s)
Grano Comestible , Triticum , Fenotipo , Fitomejoramiento
8.
Front Plant Sci ; 12: 687622, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34267771

RESUMEN

Understanding the interaction between genotype performance and the target environment is the key to improving genetic gain, particularly in the context of climate change. Wheat production is seriously compromised in agricultural regions affected by water and heat stress, such as the Mediterranean basin. Moreover, wheat production may be also limited by the nitrogen availability in the soil. We have sought to dissect the agronomic and physiological traits related to the performance of 12 high-yield European bread wheat varieties under Mediterranean rainfed conditions and different levels of N fertilization during two contrasting crop seasons. Grain yield was more than two times higher in the first season than the second season and was associated with much greater rainfall and lower temperatures. However, the nitrogen effect was rather minor. Genotypic effects existed for the two seasons. While several of the varieties from central/northern Europe yielded more than those from southern Europe during the optimal season, the opposite trend occurred in the dry season. The varieties from central/northern Europe were associated with delayed phenology and a longer crop cycle, while the varieties from southern Europe were characterized by a shorter crop cycle but comparatively higher duration of the reproductive period, associated with an earlier beginning of stem elongation and a greater number of ears per area. However, some of the cultivars from northern Europe maintained a relatively high yield capacity in both seasons. Thus, KWS Siskin from the UK exhibited intermediate phenology, resulting in a relatively long reproductive period, together with a high green area throughout the crop cycle.

9.
Sci Rep ; 10(1): 16008, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994539

RESUMEN

Enhancing nitrogen fertilization efficiency for improving yield is a major challenge for smallholder farming systems. Rapid and cost-effective methodologies with the capability to assess the effects of fertilization are required to facilitate smallholder farm management. This study compares maize leaf and canopy-based approaches for assessing N fertilization performance under different tillage, residue coverage and top-dressing conditions in Zimbabwe. Among the measurements made on individual leaves, chlorophyll readings were the best indicators for both N content in leaves (R < 0.700) and grain yield (GY) (R < 0.800). Canopy indices reported even higher correlation coefficients when assessing GY, especially those based on the measurements of the vegetation density as the green area indices (R < 0.850). Canopy measurements from both ground and aerial platforms performed very similar, but indices assessed from the UAV performed best in capturing the most relevant information from the whole plot and correlations with GY and leaf N content were slightly higher. Leaf-based measurements demonstrated utility in monitoring N leaf content, though canopy measurements outperformed the leaf readings in assessing GY parameters, while providing the additional value derived from the affordability and easiness of using a pheno-pole system or the high-throughput capacities of the UAVs.


Asunto(s)
Nitrógeno/análisis , Tecnología de Sensores Remotos/métodos , Zea mays/crecimiento & desarrollo , Agricultura/métodos , Clorofila/análisis , Productos Agrícolas/química , Productos Agrícolas/crecimiento & desarrollo , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo , Zea mays/química , Zimbabwe
10.
Plant Sci ; 295: 110281, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32534622

RESUMEN

This study compares distinct phenotypic approaches to assess wheat performance under different growing temperatures and vernalization needs. A set of 38 (winter and facultative) wheat cultivars were planted in Valladolid (Spain) under irrigation and two contrasting planting dates: normal (late autumn), and late (late winter). The late plating trial exhibited a 1.5 °C increase in average crop temperature. Measurements with different remote sensing techniques were performed at heading and grain filling, as well as carbon isotope composition (δ13C) and nitrogen content analysis. Multispectral and RGB vegetation indices and canopy temperature related better to grain yield (GY) across the whole set of genotypes in the normal compared with the late planting, with indices (such as the RGB indices Hue, a* and the spectral indices NDVI, EVI and CCI) measured at grain filling performing the best. Aerially assessed remote sensing indices only performed better than ground-acquired ones at heading. Nitrogen content and δ13C correlated with GY at both planting dates. Correlations within winter and facultative genotypes were much weaker, particularly in the facultative subset. For both planting dates, the best GY prediction models were achieved when combining remote sensing indices with δ13C and nitrogen of mature grains. Implications for phenotyping in the context of increasing temperatures are further discussed.


Asunto(s)
Isótopos de Carbono/análisis , Producción de Cultivos/métodos , Germinación , Isótopos de Nitrógeno/análisis , Tecnología de Sensores Remotos , Triticum/crecimiento & desarrollo , Fenotipo , Tecnología de Sensores Remotos/métodos , Estaciones del Año , Temperatura , Triticum/genética
11.
Plants (Basel) ; 8(10)2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31557906

RESUMEN

Coating seeds with biostimulants is among the promising approaches in crop production to increase crop tolerance to drought stress. In this study, we evaluated the potential of coating durum wheat seeds of the cultivar 'Karim' with thyme essential oil on enhancing seed germination and seedling growth, and on plant growth promotion and induction of drought resistance. Coated seeds were pre-germinated, grown in hydroponics, and grown in pots under controlled well-watered and progressive water/nutrient stress conditions. Seed coating with thyme oil increased germination rate and enhanced seedling growth development in hydroponics. In the pot experiment, thyme oil increased, when well watered, root and shoot development, chlorophyll, nitrogen balance index (NBI), abscisic acid (ABA), anthocyanins and flavonoids in leaves, decreased nitrogen isotope composition (δ15N) and increased carbon isotope composition (δ13C) of shoots. Increasing water/nutrient stress in control plants induced higher accumulation of ABA and anthocyanins coupled with a transient decrease in chlorophyll and NBI, a decrease in shoot and root development, the Normalized Difference Vegetation Index (NDVI), shoot C content, δ15N, and an increase in δ13C, revealing the avoidance strategy adopted by the cultivar. Thyme oil had the potential to enhance the avoidance strategy by inducing roots elongation, reducing the loss of shoot and roots dry matter and chlorophyll, maintaining balanced NBI, an decreasing anthocyanins, flavonoids, and δ13C via maintaining lower ABA-mediated-stomatal closure. Thyme oil increased shoot N content and δ15N indicating preferential uptake of the 15N enriched NH4+. Coating seeds with thyme oil is suggested as a promising alternative approach to improve plant's water and nutrient status and to enhance drought resistance.

12.
Sensors (Basel) ; 19(8)2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30995754

RESUMEN

Maize is the most cultivated cereal in Africa in terms of land area and production, but low soil nitrogen availability often constrains yields. Developing new maize varieties with high and reliable yields using traditional crop breeding techniques in field conditions can be slow and costly. Remote sensing has become an important tool in the modernization of field-based high-throughput plant phenotyping (HTPP), providing faster gains towards the improvement of yield potential and adaptation to abiotic and biotic limiting conditions. We evaluated the performance of a set of remote sensing indices derived from red-green-blue (RGB) images along with field-based multispectral normalized difference vegetation index (NDVI) and leaf chlorophyll content (SPAD values) as phenotypic traits for assessing maize performance under managed low-nitrogen conditions. HTPP measurements were conducted from the ground and from an unmanned aerial vehicle (UAV). For the ground-level RGB indices, the strongest correlations to yield were observed with hue, greener green area (GGA), and a newly developed RGB HTPP index, NDLab (normalized difference Commission Internationale de I´Edairage (CIE)Lab index), while GGA and crop senescence index (CSI) correlated better with grain yield from the UAV. Regarding ground sensors, SPAD exhibited the closest correlation with grain yield, notably increasing in its correlation when measured in the vegetative stage. Additionally, we evaluated how different HTPP indices contributed to the explanation of yield in combination with agronomic data, such as anthesis silking interval (ASI), anthesis date (AD), and plant height (PH). Multivariate regression models, including RGB indices (R2 > 0.60), outperformed other models using only agronomic parameters or field sensors (R2 > 0.50), reinforcing RGB HTPP's potential to improve yield assessments. Finally, we compared the low-N results to the same panel of 64 maize genotypes grown under optimal conditions, noting that only 11% of the total genotypes appeared in the highest yield producing quartile for both trials. Furthermore, we calculated the grain yield loss index (GYLI) for each genotype, which showed a large range of variability, suggesting that low-N performance is not necessarily exclusive of high productivity in optimal conditions.

13.
J Vis Exp ; (144)2019 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-30774118

RESUMEN

Ear density, or the number of ears per square meter (ears/m2), is a central focus in many cereal crop breeding programs, such as wheat and barley, representing an important agronomic yield component for estimating grain yield. Therefore, a quick, efficient, and standardized technique for assessing ear density would aid in improving agricultural management, providing improvements in preharvest yield predictions, or could even be used as a tool for crop breeding when it has been defined as a trait of importance. Not only are the current techniques for manual ear density assessments laborious and time-consuming, but they are also without any official standardized protocol, whether by linear meter, area quadrant, or an extrapolation based on plant ear density and plant counts postharvest. An automatic ear counting algorithm is presented in detail for estimating ear density with only sunlight illumination in field conditions based on zenithal (nadir) natural color (red, green, and blue [RGB]) digital images, allowing for high-throughput standardized measurements. Different field trials of durum wheat and barley distributed geographically across Spain during the 2014/2015 and 2015/2016 crop seasons in irrigated and rainfed trials were used to provide representative results. The three-phase protocol includes crop growth stage and field condition planning, image capture guidelines, and a computer algorithm of three steps: (i) a Laplacian frequency filter to remove low- and high-frequency artifacts, (ii) a median filter to reduce high noise, and (iii) segmentation and counting using local maxima peaks for the final count. Minor adjustments to the algorithm code must be made corresponding to the camera resolution, focal length, and distance between the camera and the crop canopy. The results demonstrate a high success rate (higher than 90%) and R2 values (of 0.62-0.75) between the algorithm counts and the manual image-based ear counts for both durum wheat and barley.


Asunto(s)
Agricultura/métodos , Grano Comestible/química , Hordeum/química , Fotograbar/métodos , Triticum/química
14.
Remote Sens (Basel) ; 10(2): 349, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-32704486

RESUMEN

In the coming decades, Sub-Saharan Africa (SSA) faces challenges to sustainably increase food production while keeping pace with continued population growth. Conservation agriculture (CA) has been proposed to enhance soil health and productivity to respond to this situation. Maize is the main staple food in SSA. To increase maize yields, the selection of suitable genotypes and management practices for CA conditions has been explored using remote sensing tools. They may play a fundamental role towards overcoming the traditional limitations of data collection and processing in large scale phenotyping studies. We present the result of a study in which Red-Green-Blue (RGB) and multispectral indexes were evaluated for assessing maize performance under conventional ploughing (CP) and CA practices. Eight hybrids under different planting densities and tillage practices were tested. The measurements were conducted on seedlings at ground level (0.8 m) and from an unmanned aerial vehicle (UAV) platform (30 m), causing a platform proximity effect on the images resolution that did not have any negative impact on the performance of the indexes. Most of the calculated indexes (Green Area (GA) and Normalized Difference Vegetation Index (NDVI)) were significantly affected by tillage conditions increasing their values from CP to CA. Indexes derived from the RGB-images related to canopy greenness performed better at assessing yield differences, potentially due to the greater resolution of the RGB compared with the multispectral data, although this performance was more precise for CP than CA. The correlations of the multispectral indexes with yield were improved by applying a soil-mask derived from a NDVI threshold with the aim of corresponding pixels with vegetation. The results of this study highlight the applicability of remote sensing approaches based on RGB images to the assessment of crop performance and hybrid choice.

15.
Front Plant Sci ; 8: 2004, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29230230

RESUMEN

Low soil fertility is one of the factors most limiting agricultural production, with phosphorus deficiency being among the main factors, particularly in developing countries. To deal with such environmental constraints, remote sensing measurements can be used to rapidly assess crop performance and to phenotype a large number of plots in a rapid and cost-effective way. We evaluated the performance of a set of remote sensing indices derived from Red-Green-Blue (RGB) images and multispectral (visible and infrared) data as phenotypic traits and crop monitoring tools for early assessment of maize performance under phosphorus fertilization. Thus, a set of 26 maize hybrids grown under field conditions in Zimbabwe was assayed under contrasting phosphorus fertilization conditions. Remote sensing measurements were conducted in seedlings at two different levels: at the ground and from an aerial platform. Within a particular phosphorus level, some of the RGB indices strongly correlated with grain yield. In general, RGB indices assessed at both ground and aerial levels correlated in a comparable way with grain yield except for indices a* and u*, which correlated better when assessed at the aerial level than at ground level and Greener Area (GGA) which had the opposite correlation. The Normalized Difference Vegetation Index (NDVI) evaluated at ground level with an active sensor also correlated better with grain yield than the NDVI derived from the multispectral camera mounted in the aerial platform. Other multispectral indices like the Soil Adjusted Vegetation Index (SAVI) performed very similarly to NDVI assessed at the aerial level but overall, they correlated in a weaker manner with grain yield than the best RGB indices. This study clearly illustrates the advantage of RGB-derived indices over the more costly and time-consuming multispectral indices. Moreover, the indices best correlated with GY were in general those best correlated with leaf phosphorous content. However, these correlations were clearly weaker than against grain yield and only under low phosphorous conditions. This work reinforces the effectiveness of canopy remote sensing for plant phenotyping and crop management of maize under different phosphorus nutrient conditions and suggests that the RGB indices are the best option.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...