Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Brain ; 15(1): 94, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36414974

RESUMEN

Calcineurin (Cn), a phosphatase important for synaptic plasticity and neuronal development, has been implicated in the etiology and pathophysiology of neuropsychiatric disorders, including schizophrenia, intellectual disability, autism spectrum disorders, epilepsy, and Alzheimer's disease. Forebrain-specific conditional Cn knockout mice have been known to exhibit multiple behavioral phenotypes related to these disorders. In this study, we investigated whether Cn mutant mice show pseudo-immaturity of the dentate gyrus (iDG) in the hippocampus, which we have proposed as an endophenotype shared by these disorders. Expression of calbindin and GluA1, typical markers for mature DG granule cells (GCs), was decreased and that of doublecortin, calretinin, phospho-CREB, and dopamine D1 receptor (Drd1), markers for immature GC, was increased in Cn mutants. Phosphorylation of cAMP-dependent protein kinase (PKA) substrates (GluA1, ERK2, DARPP-32, PDE4) was increased and showed higher sensitivity to SKF81297, a Drd1-like agonist, in Cn mutants than in controls. While cAMP/PKA signaling is increased in the iDG of Cn mutants, chronic treatment with rolipram, a selective PDE4 inhibitor that increases intracellular cAMP, ameliorated the iDG phenotype significantly and nesting behavior deficits with nominal significance. Chronic rolipram administration also decreased the phosphorylation of CREB, but not the other four PKA substrates examined, in Cn mutants. These results suggest that Cn deficiency induces pseudo-immaturity of GCs and that cAMP signaling increases to compensate for this maturation abnormality. This study further supports the idea that iDG is an endophenotype shared by certain neuropsychiatric disorders.


Asunto(s)
Calcineurina , Dopamina , Animales , Ratones , Calcineurina/metabolismo , Rolipram/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Ratones Noqueados , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Hipocampo/metabolismo , Giro Dentado/metabolismo
2.
Neuropsychopharmacology ; 43(3): 459-468, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28776581

RESUMEN

Although the brains of patients with schizophrenia and bipolar disorder exhibit decreased brain pH relative to those of healthy controls upon postmortem examination, it remains controversial whether this finding reflects a primary feature of the diseases or is a result of confounding factors such as medication and agonal state. To date, systematic investigation of brain pH has not been undertaken using animal models that can be studied without confounds inherent in human studies. In the present study, we first reevaluated the pH of the postmortem brains of patients with schizophrenia and bipolar disorder by conducting a meta-analysis of existing data sets from 10 studies. We then measured pH, lactate levels, and related metabolite levels in brain homogenates from five neurodevelopmental mouse models of psychiatric disorders, including schizophrenia, bipolar disorder, and autism spectrum disorder. All mice were drug naive with the same agonal state, postmortem interval, and age within each strain. Our meta-analysis revealed that brain pH was significantly lower in patients with schizophrenia and bipolar disorder than in control participants, even when a few potential confounding factors (postmortem interval, age, and history of antipsychotic use) were considered. In animal experiments, we observed significantly lower pH and higher lactate levels in the brains of model mice relative to controls, as well as a significant negative correlation between pH and lactate levels. Our findings suggest that lower pH associated with increased lactate levels is not a mere artifact, but rather implicated in the underlying pathophysiology of schizophrenia and bipolar disorder.


Asunto(s)
Encéfalo/metabolismo , Trastornos Mentales/metabolismo , Animales , Química Encefálica , Modelos Animales de Enfermedad , Endofenotipos , Femenino , Humanos , Concentración de Iones de Hidrógeno , Ácido Láctico/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados
3.
PLoS One ; 11(7): e0158686, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27392094

RESUMEN

The transmembrane semaphorin, Sema6A, has important roles in axon guidance, cell migration and neuronal connectivity in multiple regions of the nervous system, mediated by context-dependent interactions with plexin receptors, PlxnA2 and PlxnA4. Here, we demonstrate that Sema6A can also signal cell-autonomously, in two modes, constitutively, or in response to higher-order clustering mediated by either PlxnA2-binding or chemically induced multimerisation. Sema6A activation stimulates recruitment of Abl to the cytoplasmic domain of Sema6A and phos¡phorylation of this cytoplasmic tyrosine kinase, as well as phosphorylation of additional cytoskeletal regulators. Sema6A reverse signaling affects the surface area and cellular complexity of non-neuronal cells and aggregation and neurite formation of primary neurons in vitro. Sema6A also interacts with PlxnA2 in cis, which reduces binding by PlxnA2 of Sema6A in trans but not vice versa. These experiments reveal the complex nature of Sema6A biochemical functions and the molecular logic of the context-dependent interactions between Sema6A and PlxnA2.


Asunto(s)
Semaforinas/metabolismo , Animales , Movimiento Celular/genética , Movimiento Celular/fisiología , Citoplasma/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Ratones , Proteínas de Microfilamentos , Células 3T3 NIH , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fosforilación/genética , Fosforilación/fisiología , Unión Proteica/genética , Unión Proteica/fisiología , Multimerización de Proteína , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-abl/genética , Proteínas Proto-Oncogénicas c-abl/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Semaforinas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
4.
Proc Natl Acad Sci U S A ; 112(42): E5744-52, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26443861

RESUMEN

Homeostatic synaptic plasticity is a form of non-Hebbian plasticity that maintains stability of the network and fidelity for information processing in response to prolonged perturbation of network and synaptic activity. Prolonged blockade of synaptic activity decreases resting Ca(2+) levels in neurons, thereby inducing retinoic acid (RA) synthesis and RA-dependent homeostatic synaptic plasticity; however, the signal transduction pathway that links reduced Ca(2+)-levels to RA synthesis remains unknown. Here we identify the Ca(2+)-dependent protein phosphatase calcineurin (CaN) as a key regulator for RA synthesis and homeostatic synaptic plasticity. Prolonged inhibition of CaN activity promotes RA synthesis in neurons, and leads to increased excitatory and decreased inhibitory synaptic transmission. These effects of CaN inhibitors on synaptic transmission are blocked by pharmacological inhibitors of RA synthesis or acute genetic deletion of the RA receptor RARα. Thus, CaN, acting upstream of RA, plays a critical role in gating RA signaling pathway in response to synaptic activity. Moreover, activity blockade-induced homeostatic synaptic plasticity is absent in CaN knockout neurons, demonstrating the essential role of CaN in RA-dependent homeostatic synaptic plasticity. Interestingly, in GluA1 S831A and S845A knockin mice, CaN inhibitor- and RA-induced regulation of synaptic transmission is intact, suggesting that phosphorylation of GluA1 C-terminal serine residues S831 and S845 is not required for CaN inhibitor- or RA-induced homeostatic synaptic plasticity. Thus, our study uncovers an unforeseen role of CaN in postsynaptic signaling, and defines CaN as the Ca(2+)-sensing signaling molecule that mediates RA-dependent homeostatic synaptic plasticity.


Asunto(s)
Calcineurina/fisiología , Homeostasis , Plasticidad Neuronal/fisiología , Tretinoina/metabolismo , Animales , Ratones , Fosforilación , Receptores AMPA/metabolismo , Receptores de Ácido Retinoico/fisiología , Receptor alfa de Ácido Retinoico , Transducción de Señal
5.
Neuron ; 82(1): 109-124, 2014 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-24698271

RESUMEN

Development of the nervous system begins with neural induction, which is controlled by complex signaling networks functioning in concert with one another. Fine-tuning of the bone morphogenetic protein (BMP) pathway is essential for neural induction in the developing embryo. However, the molecular mechanisms by which cells integrate the signaling pathways that contribute to neural induction have remained unclear. We find that neural induction is dependent on the Ca(2+)-activated phosphatase calcineurin (CaN). Fibroblast growth factor (FGF)-regulated Ca(2+) entry activates CaN, which directly and specifically dephosphorylates BMP-regulated Smad1/5 proteins. Genetic and biochemical analyses revealed that CaN adjusts the strength and transcriptional output of BMP signaling and that a reduction of CaN activity leads to an increase of Smad1/5-regulated transcription. As a result, FGF-activated CaN signaling opposes BMP signaling during gastrulation, thereby promoting neural induction and the development of anterior structures.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Calcineurina/metabolismo , Desarrollo Embrionario/genética , Neuronas/fisiología , Transducción de Señal/genética , Animales , Calcineurina/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Ciclosporina/farmacología , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/fisiología , Desarrollo Embrionario/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/farmacología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Inmunosupresores/farmacología , Ratones , Ratones Transgénicos , Mutación/genética , Neuronas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Tacrolimus/farmacología
6.
Proc Natl Acad Sci U S A ; 110(24): 9992-7, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23716704

RESUMEN

The misassembly of soluble proteins into toxic aggregates, including amyloid fibrils, underlies a large number of human degenerative diseases. Cardiac amyloidoses, which are most commonly caused by aggregation of Ig light chains or transthyretin (TTR) in the cardiac interstitium and conducting system, represent an important and often underdiagnosed cause of heart failure. Two types of TTR-associated amyloid cardiomyopathies are clinically important. The Val122Ile (V122I) mutation, which alters the kinetic stability of TTR and affects 3% to 4% of African American subjects, can lead to development of familial amyloid cardiomyopathy. In addition, aggregation of WT TTR in individuals older than age 65 y causes senile systemic amyloidosis. TTR-mediated amyloid cardiomyopathies are chronic and progressive conditions that lead to arrhythmias, biventricular heart failure, and death. As no Food and Drug Administration-approved drugs are currently available for treatment of these diseases, the development of therapeutic agents that prevent TTR-mediated cardiotoxicity is desired. Here, we report the development of AG10, a potent and selective kinetic stabilizer of TTR. AG10 prevents dissociation of V122I-TTR in serum samples obtained from patients with familial amyloid cardiomyopathy. In contrast to other TTR stabilizers currently in clinical trials, AG10 stabilizes V122I- and WT-TTR equally well and also exceeds their efficacy to stabilize WT and mutant TTR in whole serum. Crystallographic studies of AG10 bound to V122I-TTR give valuable insights into how AG10 achieves such effective kinetic stabilization of TTR, which will also aid in designing better TTR stabilizers. The oral bioavailability of AG10, combined with additional desirable drug-like features, makes it a very promising candidate to treat TTR amyloid cardiomyopathy.


Asunto(s)
Amiloide/antagonistas & inhibidores , Amiloidosis/prevención & control , Benzoatos/uso terapéutico , Cardiomiopatías/prevención & control , Prealbúmina/metabolismo , Pirazoles/uso terapéutico , Amiloide/genética , Amiloide/metabolismo , Amiloidosis/genética , Amiloidosis/metabolismo , Animales , Área Bajo la Curva , Benzoatos/química , Benzoatos/farmacocinética , Benzoxazoles/metabolismo , Benzoxazoles/farmacocinética , Benzoxazoles/farmacología , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Células HeLa , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos ICR , Modelos Moleculares , Estructura Molecular , Mutación , Prealbúmina/química , Prealbúmina/genética , Unión Proteica , Estabilidad Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Pirazoles/química , Pirazoles/farmacocinética , Ratas , Ratas Wistar
7.
J Med Chem ; 55(7): 3002-10, 2012 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-22420626

RESUMEN

Drug design studies targeting one of the primary toxic agents in Alzheimer's disease, soluble oligomers of amyloid ß-protein (Aß), have been complicated by the rapid, heterogeneous aggregation of Aß and the resulting difficulty to structurally characterize the peptide. To address this, we have developed [Nle(35), D-Pro(37)]Aß(42), a substituted peptide inspired from molecular dynamics simulations which forms structures stable enough to be analyzed by NMR. We report herein that [Nle(35), D-Pro(37)]Aß(42) stabilizes the trimer and prevents mature fibril and ß-sheet formation. Further, [Nle(35), D-Pro(37)]Aß(42) interacts with WT Aß(42) and reduces aggregation levels and fibril formation in mixtures. Using ligand-based drug design based on [Nle(35), D-Pro(37)]Aß(42), a lead compound was identified with effects on inhibition similar to the peptide. The ability of [Nle(35), D-Pro(37)]Aß(42) and the compound to inhibit the aggregation of Aß(42) provides a novel tool to study the structure of Aß oligomers. More broadly, our data demonstrate how molecular dynamics simulation can guide experiment for further research into AD.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/química , Fragmentos de Péptidos/química , Animales , Supervivencia Celular/efectos de los fármacos , Dicroismo Circular , Modelos Moleculares , Células PC12 , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/toxicidad , Polimerizacion , Estructura Secundaria de Proteína , Ratas , Soluciones , Relación Estructura-Actividad
8.
Sci Transl Med ; 3(97): 97ra81, 2011 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-21865539

RESUMEN

A valine-to-isoleucine mutation at position 122 of the serum protein transthyretin (TTR), found in 3 to 4% of African Americans, alters its stability, leading to amyloidogenesis and cardiomyopathy. In addition, 10 to 15% of individuals older than 65 years develop senile systemic amyloidosis and cardiac TTR deposits because of wild-type TTR amyloidogenesis. Although several drugs are in development, no approved therapies for TTR amyloid cardiomyopathy are yet available, so the identification of additional compounds that prevent amyloid-mediated cardiotoxicity is needed. To this aim, we developed a fluorescence polarization-based high-throughput screen and used it to identify several new chemical scaffolds that target TTR. These compounds were potent kinetic stabilizers of TTR and prevented TTR tetramer dissociation, partial unfolding, and aggregation of both wild type and the most common cardiomyopathy-associated TTR mutant, V122I-TTR. High-resolution co-crystal structures and characterization of the binding energetics revealed how these diverse structures bound to tetrameric TTR. These compounds effectively inhibited the proteotoxicity of V122I-TTR toward human cardiomyocytes. Several of these ligands stabilized TTR in human serum more effectively than diflunisal, which is a well-studied inhibitor of TTR aggregation, and may be promising leads for the treatment or prevention of TTR-mediated cardiomyopathy.


Asunto(s)
Amiloidosis/metabolismo , Cardiomiopatías/metabolismo , Prealbúmina/metabolismo , Amiloidosis/prevención & control , Benzofenonas/farmacología , Línea Celular , Línea Celular Tumoral , Polarización de Fluorescencia , Humanos , Estructura Molecular , Unión Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos
9.
Science ; 323(5914): 651-4, 2009 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-19179536

RESUMEN

Schwann cells develop from multipotent neural crest cells and form myelin sheaths around axons that allow rapid transmission of action potentials. Neuregulin signaling through the ErbB receptor regulates Schwann cell development; however, the downstream pathways are not fully defined. We find that mice lacking calcineurin B1 in the neural crest have defects in Schwann cell differentiation and myelination. Neuregulin addition to Schwann cell precursors initiates an increase in cytoplasmic Ca2+, which activates calcineurin and the downstream transcription factors NFATc3 and c4. Purification of NFAT protein complexes shows that Sox10 is an NFAT nuclear partner and synergizes with NFATc4 to activate Krox20, which regulates genes necessary for myelination. Our studies demonstrate that calcineurin and NFAT are essential for neuregulin and ErbB signaling, neural crest diversification, and differentiation of Schwann cells.


Asunto(s)
Calcineurina/metabolismo , Factores de Transcripción NFATC/metabolismo , Neurregulinas/metabolismo , Células de Schwann/citología , Células de Schwann/metabolismo , Transducción de Señal , Animales , Calcio/metabolismo , Diferenciación Celular , Línea Celular , Técnicas de Cocultivo , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Ganglios Espinales/citología , Ratones , Vaina de Mielina/fisiología , Cresta Neural/citología , Cresta Neural/metabolismo , Fosforilación , Receptor ErbB-2/metabolismo , Receptor ErbB-3 , Factores de Transcripción SOXE/metabolismo
10.
Sci Signal ; 1(51): pe54, 2008 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-19109237

RESUMEN

An increase in extracellular Ca(2+) induces the nuclear localization of the Crz1 transcription factor and the activation of target genes in yeast. A recent study indicates that nuclear entry occurs in short stochastic bursts that are unsynchronized within the population of cells. The frequency but not the amplitude of the bursts is controlled by Ca(2+). Modulation of the frequency of the burst coordinates aspects of expression of Crz target genes.


Asunto(s)
Transporte Activo de Núcleo Celular , Regulación Fúngica de la Expresión Génica , Calcio/farmacología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Genes Fúngicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Levaduras/genética
11.
Neuron ; 56(1): 94-108, 2007 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-17920018

RESUMEN

The diversity of dendritic patterns is one of the fundamental characteristics of neurons and is in part regulated by transcriptional programs initiated by electrical activity. We show that dendritic outgrowth requires a family of combinatorially assembled, neuron-specific chromatin remodeling complexes (nBAF complexes) distinguished by the actin-related protein BAF53b and based on the Brg/Brm ATPases. nBAF complexes bind tightly to the Ca(2+)-responsive dendritic regulator CREST and directly regulate genes essential for dendritic outgrowth. BAF53b is not required for nBAF complex assembly or the interaction with CREST, yet is required for their recruitment to the promoters of specific target genes. The highly homologous BAF53a protein, which is a component of neural progenitor and nonneural BAF complexes, cannot replace BAF53b's role in dendritic development. Remarkably, we find that this functional specificity is conferred by the actin fold subdomain 2 of BAF53b. These studies suggest that the genes encoding the individual subunits of BAF complexes function like letters in a ten-letter word to produce biologically specific meanings (in this case dendritic outgrowth) by combinatorial assembly of their products.


Asunto(s)
Actinas/genética , Ensamble y Desensamble de Cromatina/fisiología , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Dendritas/fisiología , Neuronas/citología , Actinas/deficiencia , Animales , Calcio/metabolismo , Células Cultivadas , Ensamble y Desensamble de Cromatina/genética , Inmunoprecipitación de Cromatina/métodos , Proteínas Cromosómicas no Histona/deficiencia , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/metabolismo , Dendritas/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Ratones , Ratones Noqueados , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo
12.
Neuron ; 55(2): 201-15, 2007 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-17640523

RESUMEN

Mammalian neural stem cells (NSCs) have the capacity to both self-renew and to generate all the neuronal and glial cell-types of the adult nervous system. Global chromatin changes accompany the transition from proliferating NSCs to committed neuronal lineages, but the mechanisms involved have been unclear. Using a proteomics approach, we show that a switch in subunit composition of neural, ATP-dependent SWI/SNF-like chromatin remodeling complexes accompanies this developmental transition. Proliferating neural stem and progenitor cells express complexes in which BAF45a, a Krüppel/PHD domain protein and the actin-related protein BAF53a are quantitatively associated with the SWI2/SNF2-like ATPases, Brg and Brm. As neural progenitors exit the cell cycle, these subunits are replaced by the homologous BAF45b, BAF45c, and BAF53b. BAF45a/53a subunits are necessary and sufficient for neural progenitor proliferation. Preventing the subunit switch impairs neuronal differentiation, indicating that this molecular event is essential for the transition from neural stem/progenitors to postmitotic neurons. More broadly, these studies suggest that SWI/SNF-like complexes in vertebrates achieve biological specificity by combinatorial assembly of their subunits.


Asunto(s)
Diferenciación Celular/fisiología , Ensamble y Desensamble de Cromatina/fisiología , Complejos Multienzimáticos/metabolismo , Células Madre Multipotentes/metabolismo , Neuronas/citología , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Diferenciación Celular/genética , Ensamble y Desensamble de Cromatina/genética , Epigénesis Genética/genética , Epigénesis Genética/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Células Madre Multipotentes/citología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células Neuroepiteliales/citología , Células Neuroepiteliales/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Factores de Transcripción/genética
13.
Trends Cell Biol ; 17(6): 251-60, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17493814

RESUMEN

The calcium/calcineurin-dependent NFATc family is thought to have arisen following the recombination of an ancient precursor with a Rel domain about 500 million years ago, producing a new group of signaling and transcription factors (the NFATc genes) found only in the genomes of vertebrates. Cell biological, genetic and biochemical evidence indicates that the circuitry of this pathway is well suited for intercalation with older pathways. We propose that this recombination enabled Ca(2+) signals to be redirected to a new transcriptional program, which provided part of the groundwork for vertebrate morphogenesis and organogenesis. This notion predicts that calcineurin-NFAT signaling would be essential for much of vertebrate development. We review recent evidence supporting this prediction and propose a systematic approach to explore aspects of vertebrate morphogenesis.


Asunto(s)
Evolución Biológica , Factores de Transcripción NFATC/metabolismo , Transducción de Señal/fisiología , Vertebrados , Transporte Activo de Núcleo Celular/fisiología , Animales , Calcio/metabolismo , Modelos Moleculares , Morfogénesis , Factores de Transcripción NFATC/química , Factores de Transcripción NFATC/genética , Estructura Terciaria de Proteína , Recombinación Genética , Transcripción Genética , Vertebrados/anatomía & histología , Vertebrados/fisiología
14.
Proc Natl Acad Sci U S A ; 104(14): 5842-7, 2007 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-17389358

RESUMEN

The molecular mechanism and significance of endocytic processes involved in directional axon elongation are not well understood. The Unc-51 family of serine/threonine kinases was shown to be important for axon growth and was also linked to endocytosis, providing an entry point to study this problem. We found that mouse Unc-51-like kinase 1/2 (Ulk1/2) proteins are localized to vesicular structures in growth cones of mouse spinal sensory neurons. RNAi-mediated knockdown of Ulk1 and/or Ulk2 resulted in impaired endocytosis of nerve growth factor (NGF), excessive axon arborization, and severely stunted axon elongation. The evidence also indicates that Ulk1/2 mediates a non-clathrin-coated endocytosis in sensory growth cones. Interestingly, NGF can induce the interaction of Ulk1 with TrkA receptor complexes through promoting K63-polyubiquitination of Ulk1 and binding of Ulk1 to the scaffolding protein p62. These results and additional studies suggest that Ulk1/2 proteins regulate filopodia extension and neurite branching during sensory axon outgrowth, probably through regulating TrkA receptor trafficking and signaling.


Asunto(s)
Axones/fisiología , Endocitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Seudópodos/fisiología , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia , Axones/efectos de los fármacos , Línea Celular , Embrión de Mamíferos , Técnica del Anticuerpo Fluorescente Directa , Ganglios Espinales/citología , Ganglios Espinales/enzimología , Proteínas Fluorescentes Verdes/metabolismo , Conos de Crecimiento/enzimología , Conos de Crecimiento/fisiología , Humanos , Ratones , Factor de Crecimiento Nervioso/farmacología , Neuritas/fisiología , Neuronas Aferentes/enzimología , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptor Cross-Talk/efectos de los fármacos , Receptor trkA/metabolismo , Factor de Transcripción TFIIH , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo
15.
Mol Cell Biol ; 26(20): 7372-87, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16908540

RESUMEN

Compromised immunoregulation contributes to obesity and complications in metabolic pathogenesis. Here, we demonstrate that the nuclear factor of activated T cell (NFAT) group of transcription factors contributes to glucose and insulin homeostasis. Expression of two members of the NFAT family (NFATc2 and NFATc4) is induced upon adipogenesis and in obese mice. Mice with the Nfatc2-/- Nfatc4-/- compound disruption exhibit defects in fat accumulation and are lean. Nfatc2-/- Nfatc4-/- mice are also protected from diet-induced obesity. Ablation of NFATc2 and NFATc4 increases insulin sensitivity, in part, by sustained activation of the insulin signaling pathway. Nfatc2-/- Nfatc4-/- mice also exhibit an altered adipokine profile, with reduced resistin and leptin levels. Mechanistically, NFAT is recruited to the transcription loci and regulates resistin gene expression upon insulin stimulation. Together, these results establish a role for NFAT in glucose/insulin homeostasis and expand the repertoire of NFAT function to metabolic pathogenesis and adipokine gene transcription.


Asunto(s)
Glucosa/metabolismo , Homeostasis , Insulina/metabolismo , Factores de Transcripción NFATC/metabolismo , Proteínas Quinasas Activadas por AMP , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipocitos/patología , Animales , Diferenciación Celular , Línea Celular , Chlorocebus aethiops , Grasas de la Dieta/farmacología , Expresión Génica , Humanos , Ratones , Ratones Noqueados , Complejos Multienzimáticos/metabolismo , Factores de Transcripción NFATC/deficiencia , Factores de Transcripción NFATC/genética , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Resistina/metabolismo , Sensibilidad y Especificidad , Transducción de Señal
16.
Nature ; 441(7093): 595-600, 2006 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-16554754

RESUMEN

Trisomy 21 results in Down's syndrome, but little is known about how a 1.5-fold increase in gene dosage produces the pleiotropic phenotypes of Down's syndrome. Here we report that two genes, DSCR1 and DYRK1A , lie within the critical region of human chromosome 21 and act synergistically to prevent nuclear occupancy of NFATc transcription factors, which are regulators of vertebrate development. We use mathematical modelling to predict that autoregulation within the pathway accentuates the effects of trisomy of DSCR1 and DYRK1A, leading to failure to activate NFATc target genes under specific conditions. Our observations of calcineurin-and Nfatc-deficient mice, Dscr1- and Dyrk1a-overexpressing mice, mouse models of Down's syndrome and human trisomy 21 are consistent with these predictions. We suggest that the 1.5-fold increase in dosage of DSCR1 and DYRK1A cooperatively destabilizes a regulatory circuit, leading to reduced NFATc activity and many of the features of Down's syndrome. More generally, these observations suggest that the destabilization of regulatory circuits can underlie human disease.


Asunto(s)
Cromosomas de los Mamíferos/genética , Síndrome de Down/genética , Dosificación de Gen/genética , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Musculares/genética , Factores de Transcripción NFATC/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Animales , Proteínas de Unión al Calcio , Cromosomas Humanos Par 21/genética , Modelos Animales de Enfermedad , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Transgénicos , Modelos Genéticos , Proteínas Musculares/metabolismo , Mutación/genética , Factores de Transcripción NFATC/deficiencia , Factores de Transcripción NFATC/genética , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas , Transgenes/genética , Quinasas DyrK
17.
Mol Cell Biol ; 25(3): 907-20, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15657420

RESUMEN

Integration of protein kinases into transcription activation complexes influences the magnitude of gene expression. The nuclear factor of activated T cells (NFAT) group of proteins are critical transcription factors that direct gene expression in immune and nonimmune cells. A balance of phosphotransferase activity is necessary for optimal NFAT activation. Activation of NFAT requires dephosphorylation by the calcium-mediated calcineurin phosphatase to promote NFAT nuclear accumulation, and the Ras-activated extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase, which targets NFAT partners, to potentiate transcription. Whether protein kinases operate on NFAT and contribute positively to transcription activation is not clear. Here, we coupled DNA affinity isolation with in-gel kinase assays to avidly pull down the activated NFAT and identify its associated protein kinases. We demonstrate that p90 ribosomal S6 kinase (RSK) is recruited to the NFAT-DNA transcription complex upon activation. The formation of RSK-NFATc4-DNA transcription complex is also apparent upon adipogenesis. Bound RSK phosphorylates Ser(676) and potentiates NFATc4 DNA binding by escalating NFAT-DNA association. Ser(676) is also targeted by the ERK MAP kinase, which interacts with NFAT at a distinct region than RSK. Thus, integration of the ERK/RSK signaling pathway provides a mechanism to modulate NFATc4 transcription activity.


Asunto(s)
Calcineurina/metabolismo , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Factores de Transcripción/metabolismo , Células 3T3-L1 , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Activación Enzimática/fisiología , Humanos , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factores de Transcripción NFATC , Fosforilación , Unión Proteica , Transducción de Señal/fisiología
18.
Science ; 306(5697): 865-9, 2004 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-15514157

RESUMEN

Protein aggregation is involved in the pathogenesis of neurodegenerative diseases and hence is considered an attractive target for therapeutic intervention. However, protein-protein interactions are exceedingly difficult to inhibit. Small molecules lack sufficient steric bulk to prevent interactions between large peptide surfaces. To yield potent inhibitors of beta-amyloid (Abeta) aggregation, we synthesized small molecules that increase their steric bulk by binding to chaperones but also have a moiety available for interaction with Abeta. This strategy yields potent inhibitors of Abeta aggregation and could lead to therapeutics for Alzheimer's disease and other forms of neurodegeneration.


Asunto(s)
Péptidos beta-Amiloides/química , Rojo Congo/análogos & derivados , Rojo Congo/síntesis química , Rojo Congo/farmacología , Chaperonas Moleculares/metabolismo , Neuronas/efectos de los fármacos , Piperidinas/síntesis química , Piperidinas/farmacología , Proteínas de Unión a Tacrolimus/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Animales , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Rojo Congo/química , Rojo Congo/metabolismo , Reactivos de Enlaces Cruzados , Fluorescencia , Hipocampo/citología , Etiquetado Corte-Fin in Situ , Ligandos , Microscopía Fluorescente , Estructura Molecular , Neuritas/ultraestructura , Neuronas/citología , Neuronas/ultraestructura , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Piperidinas/química , Piperidinas/metabolismo , Ratas , Proteínas de Unión a Tacrolimus/farmacología
19.
Cell ; 118(5): 649-63, 2004 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-15339668

RESUMEN

The delicate leaflets that make up vertebrate heart valves are essential for our moment-to-moment existence. Abnormalities of valve formation are the most common serious human congenital defect. Despite their importance, relatively little is known about valve development. We show that the initiation of heart valve morphogenesis in mice requires calcineurin/NFAT to repress VEGF expression in the myocardium underlying the site of prospective valve formation. This repression of VEGF at E9 is essential for endocardial cells to transform into mesenchymal cells. Later, at E11, a second wave of calcineurin/NFAT signaling is required in the endocardium, adjacent to the earlier myocardial site of NFAT action, to direct valvular elongation and refinement. Thus, NFAT signaling functions sequentially from myocardium to endocardium within a valvular morphogenetic field to initiate and perpetuate embryonic valve formation. This mechanism also operates in zebrafish, indicating a conserved role for calcineurin/NFAT signaling in vertebrate heart valve morphogenesis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Endocardio/embriología , Endocardio/metabolismo , Válvulas Cardíacas/embriología , Miocardio/metabolismo , Proteínas Nucleares , Factores de Transcripción/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Calcineurina/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Embrión no Mamífero , Endocardio/citología , Regulación del Desarrollo de la Expresión Génica/genética , Válvulas Cardíacas/citología , Válvulas Cardíacas/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Ratones Transgénicos , Morfogénesis/genética , Miocardio/citología , Factores de Transcripción NFATC , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Pez Cebra
20.
Cell ; 113(5): 657-70, 2003 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-12787506

RESUMEN

Axon outgrowth is the first step in the formation of neuronal connections, but the pathways that regulate axon extension are still poorly understood. We find that mice deficient in calcineurin-NFAT signaling have dramatic defects in axonal outgrowth, yet have little or no defect in neuronal differentiation or survival. In vitro, sensory and commissural neurons lacking calcineurin function or NFATc2, c3, and c4 are unable to respond to neurotrophins or netrin-1 with efficient axonal outgrowth. Neurotrophins and netrins stimulate calcineurin-dependent nuclear localization of NFATc4 and activation of NFAT-mediated gene transcription in cultured primary neurons. These data indicate that the ability of these embryonic axons to respond to growth factors with rapid outgrowth requires activation of calcineurin/NFAT signaling by these factors. The precise parsing of signals for elongation turning and survival could allow independent control of these processes during development.


Asunto(s)
Calcineurina/deficiencia , Diferenciación Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Conos de Crecimiento/metabolismo , Sistema Nervioso/embriología , Proteínas Nucleares , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/genética , Animales , Calcineurina/genética , Inhibidores de la Calcineurina , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/ultraestructura , Sustancias de Crecimiento/metabolismo , Sustancias de Crecimiento/farmacología , Ratones , Mutación/genética , Factores de Transcripción NFATC , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/farmacología , Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Netrina-1 , Inhibidores de la Síntesis de la Proteína/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/genética , Proteínas Supresoras de Tumor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...