Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4731, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830889

RESUMEN

Major antibiotic groups are losing effectiveness due to the uncontrollable spread of antimicrobial resistance (AMR) genes. Among these, ß-lactam resistance genes -encoding ß-lactamases- stand as the most common resistance mechanism in Enterobacterales due to their frequent association with mobile genetic elements. In this context, novel approaches that counter mobile AMR are urgently needed. Collateral sensitivity (CS) occurs when the acquisition of resistance to one antibiotic increases susceptibility to another antibiotic and can be exploited to eliminate AMR selectively. However, most CS networks described so far emerge as a consequence of chromosomal mutations and cannot be leveraged to tackle mobile AMR. Here, we dissect the CS response elicited by the acquisition of a prevalent antibiotic resistance plasmid to reveal that the expression of the ß-lactamase gene blaOXA-48 induces CS to colistin and azithromycin. We next show that other clinically relevant mobile ß-lactamases produce similar CS responses in multiple, phylogenetically unrelated E. coli strains. Finally, by combining experiments with surveillance data comprising thousands of antibiotic susceptibility tests, we show that ß-lactamase-induced CS is pervasive within Enterobacterales. These results highlight that the physiological side-effects of ß-lactamases can be leveraged therapeutically, paving the way for the rational design of specific therapies to block mobile AMR or at least counteract their effects.


Asunto(s)
Antibacterianos , Escherichia coli , Pruebas de Sensibilidad Microbiana , beta-Lactamasas , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Sensibilidad Colateral al uso de Fármacos/genética , Plásmidos/genética , Azitromicina/farmacología , Colistina/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Resistencia betalactámica/genética
2.
Genome Med ; 16(1): 67, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711148

RESUMEN

BACKGROUND: Infections caused by multidrug-resistant gram-negative bacteria present a severe threat to global public health. The WHO defines drug-resistant Klebsiella pneumoniae as a priority pathogen for which alternative treatments are needed given the limited treatment options and the rapid acquisition of novel resistance mechanisms by this species. Longitudinal descriptions of genomic epidemiology of Klebsiella pneumoniae can inform management strategies but data from sub-Saharan Africa are lacking. METHODS: We present a longitudinal analysis of all invasive K. pneumoniae isolates from a single hospital in Blantyre, Malawi, southern Africa, from 1998 to 2020, combining clinical data with genome sequence analysis of the isolates. RESULTS: We show that after a dramatic increase in the number of infections from 2016 K. pneumoniae becomes hyperendemic, driven by an increase in neonatal infections. Genomic data show repeated waves of clonal expansion of different, often ward-restricted, lineages, suggestive of hospital-associated transmission. We describe temporal trends in resistance and surface antigens, of relevance for vaccine development. CONCLUSIONS: Our data highlight a clear need for new interventions to prevent rather than treat K. pneumoniae infections in our setting. Whilst one option may be a vaccine, the majority of cases could be avoided by an increased focus on and investment in infection prevention and control measures, which would reduce all healthcare-associated infections and not just one.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Humanos , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Estudios Longitudinales , Vacunas Bacterianas/inmunología , Adulto , Femenino , Hospitales , Niño , Masculino , Preescolar , Lactante , Persona de Mediana Edad , África del Sur del Sahara/epidemiología , Infección Hospitalaria/microbiología , Adolescente , Genoma Bacteriano , Farmacorresistencia Bacteriana Múltiple/genética , Recién Nacido , Malaui/epidemiología , Adulto Joven
3.
J Virol ; 95(15): e0012721, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34011542

RESUMEN

Small-molecule drugs inhibiting BK polyomavirus (BKPyV) represent a significant unmet clinical need in view of polyomavirus-associated nephropathy or hemorrhagic cystitis, which complicate 5% to 25% of kidney and hematopoietic cell transplantations. We characterized the inhibitory activity of acitretin on BKPyV replication in primary human renal proximal tubular epithelial cells (RPTECs). Effective inhibitory concentrations of 50% (EC50) and 90% (EC90) were determined in dilution series measuring BKPyV loads, transcripts, and protein expression, using cell proliferation, metabolic activity, and viability to estimate cytotoxic concentrations and selectivity indices (SI). The acitretin EC50 and EC90 in RPTECs were 0.64 (SI50, 250) and 3.25 µM (SI90, 49.2), respectively. Acitretin effectively inhibited BKPyV replication until 72 h postinfection when added 24 h before infection until 12 h after infection, but decreased to <50% at later time points. Acitretin did not interfere with nuclear delivery of BKPyV genomes, but it decreased large T-antigen transcription and protein expression. Acitretin did not inhibit the initial round of BKPyV replication following transfection of full-length viral genomes, but it affected subsequent rounds of reinfection. Acitretin also inhibited BKPyV replication in human urothelial cells and in Vero cells, but not in COS-7 cells constitutively expressing Simian virus 40 (SV40) large T antigen. Retinoic acid agonists (all-trans retinoic acid, 9-cis retinoic acid [9-cis-RA], 13-cis-RA, bexarotene, and tamibarotene) and the RAR/RXR antagonist RO41-5253 also inhibited BKPyV replication, pointing to an as-yet-undefined mechanism. IMPORTANCE Acitretin selectively inhibits BKPyV replication in primary human cell culture models of nephropathy and hemorrhagic cystitis. Since acitretin is an approved drug in clinical use reaching BKPyV-inhibiting concentrations in systemically treated patients, further studies are warranted to provide data for clinical repurposing of retinoids for treatment and prevention of replicative BKPyV-diseases.


Asunto(s)
Acitretina/farmacología , Antivirales/farmacología , Virus BK/crecimiento & desarrollo , Retinoides/farmacología , Tretinoina/farmacología , Replicación Viral/efectos de los fármacos , Animales , Antígenos Virales de Tumores/biosíntesis , Antígenos Virales de Tumores/genética , Células COS , Línea Celular , Chlorocebus aethiops , Cistitis/tratamiento farmacológico , Cistitis/virología , Genoma Viral/genética , Células HEK293 , Humanos , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/virología , Pruebas de Sensibilidad Microbiana , Infecciones por Polyomavirus/tratamiento farmacológico , Tretinoina/análogos & derivados , Infecciones Tumorales por Virus/tratamiento farmacológico , Células Vero
4.
Rev Med Virol ; 31(6): e2220, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33729628

RESUMEN

Human polyomaviruses (HPyVs) encompass more than 10 species infecting 30%-90% of the human population without significant illness. Proven HPyV diseases with documented histopathology affect primarily immunocompromised hosts with manifestations in brain, skin and renourinary tract such as polyomavirus-associated nephropathy (PyVAN), polyomavirus-associated haemorrhagic cystitis (PyVHC), polyomavirus-associated urothelial cancer (PyVUC), progressive multifocal leukoencephalopathy (PML), Merkel cell carcinoma (MCC), Trichodysplasia spinulosa (TS) and pruritic hyperproliferative keratinopathy. Although virus-specific immune control is the eventual goal of therapy and lasting cure, antiviral treatments are urgently needed in order to reduce or prevent HPyV diseases and thereby bridging the time needed to establish virus-specific immunity. However, the small dsDNA genome of only 5 kb of the non-enveloped HPyVs only encodes 5-7 viral proteins. Thus, HPyV replication relies heavily on host cell factors, thereby limiting both, number and type of specific virus-encoded antiviral targets. Lack of cost-effective high-throughput screening systems and relevant small animal models complicates the preclinical development. Current clinical studies are limited by small case numbers, poorly efficacious compounds and absence of proper randomized trial design. Here, we review preclinical and clinical studies that evaluated small molecules with presumed antiviral activity against HPyVs and provide an outlook regarding potential new antiviral strategies.


Asunto(s)
Antivirales/uso terapéutico , Poliomavirus/efectos de los fármacos , Virus ADN , Humanos
5.
mSystems ; 5(6)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33361328

RESUMEN

The rapid horizontal transmission of antibiotic resistance genes on conjugative plasmids between bacterial host cells is a major cause of the accelerating antibiotic resistance crisis. There are currently no experimental platforms for fast and cost-efficient screening of genetic effects on antibiotic resistance transmission by conjugation, which prevents understanding and targeting conjugation. We introduce a novel experimental framework to screen for conjugation-based horizontal transmission of antibiotic resistance between >60,000 pairs of cell populations in parallel. Plasmid-carrying donor strains are constructed in high-throughput. We then mix the resistance plasmid-carrying donors with recipients in a design where only transconjugants can reproduce, measure growth in dense intervals, and extract transmission times as the growth lag. As proof-of-principle, we exhaustively explore chromosomal genes controlling F-plasmid donation within Escherichia coli populations, by screening the Keio deletion collection in high replication. We recover all seven known chromosomal gene mutants affecting conjugation as donors and identify many novel mutants, all of which diminish antibiotic resistance transmission. We validate nine of the novel genes' effects in liquid mating assays and complement one of the novel genes' effect on conjugation (rseA). The new framework holds great potential for exhaustive disclosing of candidate targets for helper drugs that delay resistance development in patients and societies and improve the longevity of current and future antibiotics. Further, the platform can easily be adapted to explore interspecies conjugation, plasmid-borne factors, and experimental evolution and be used for rapid construction of strains.IMPORTANCE The rapid transmission of antibiotic resistance genes on conjugative plasmids between bacterial host cells is a major cause of the accelerating antibiotic resistance crisis. There are currently no experimental platforms for fast and cost-efficient screening of genetic effects on antibiotic resistance transmission by conjugation, which prevents understanding and targeting conjugation. We introduce a novel experimental framework to screen for conjugation-based horizontal transmission of antibiotic resistance between >60,000 pairs of cell populations in parallel. As proof-of-principle, we exhaustively explore chromosomal genes controlling F-plasmid donation within E. coli populations. We recover all previously known and many novel chromosomal gene mutants that affect conjugation efficiency. The new framework holds great potential for rapid screening of compounds that decrease transmission. Further, the platform can easily be adapted to explore interspecies conjugation, plasmid-borne factors, and experimental evolution and be used for rapid construction of strains.

6.
Int J Pharm ; 587: 119646, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32679261

RESUMEN

Limited and poor delivery of antibiotics is cited as one reason for the difficulty in treating antibiotic-resistant biofilms associated with chronic infections. We investigate the effectiveness of a positively charged, single isomer cyclodextrin derivative, octakis[6-(2-aminoethylthio)-6-deoxy]-γ-CD (γCys) to improve the delivery of antibiotics to biofilms. Using multiphoton laser scanning microscopy complemented with super-resolution fluorescence microscopy, we showed that γCys tagged with fluorescein (FITC) is uniformly distributed throughout live S. epidermidis biofilm cultures in vitro and results suggest it is localized extracellularly in the biofilm matrix. NMR spectroscopic data in aqueous solution confirm that γCys forms inclusion complexes with both the antibiotics oxacillin and rifampicin. Efficacy of γCys/antibiotic (oxacillin and rifampicin) was measured in the biofilms. While treatment with γCys/oxacillin had little improvement over oxacillin alone, γCys/rifampicin reduced the biofilm viability to background levels demonstrating a remarkable improvement over rifampicin alone. The strong synergistic effect for γCys/rifampicin is at this stage not clearly understood, but plausible explanations are related to increased solubility of rifampicin upon complexation and/or synergistic interference with components of the biofilm. The results demonstrate that designed cyclodextrin nanocarriers, like γCys, efficiently deliver suitable antibiotics to biofilms and that fluorescence microscopy offers a novel approach for mechanistic investigations.


Asunto(s)
Staphylococcus epidermidis , gamma-Ciclodextrinas , Antibacterianos/farmacología , Biopelículas , Cisteamina , Pruebas de Sensibilidad Microbiana , Microscopía Fluorescente
7.
iScience ; 23(7): 101257, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32599557

RESUMEN

Immune escape contributes to viral persistence, yet little is known about human polyomaviruses. BK-polyomavirus (BKPyV) asymptomatically infects 90% of humans but causes premature allograft failure in kidney transplant patients. Despite virus-specific T cells and neutralizing antibodies, BKPyV persists in kidneys and evades immune control as evidenced by urinary shedding in immunocompetent individuals. Here, we report that BKPyV disrupts the mitochondrial network and membrane potential when expressing the 66aa-long agnoprotein during late replication. Agnoprotein is necessary and sufficient, using its amino-terminal and central domain for mitochondrial targeting and network disruption, respectively. Agnoprotein impairs nuclear IRF3-translocation, interferon-beta expression, and promotes p62/SQSTM1-mitophagy. Agnoprotein-mutant viruses unable to disrupt mitochondria show reduced replication and increased interferon-beta expression but can be rescued by type-I interferon blockade, TBK1-inhibition, or CoCl2-treatment. Mitochondrial fragmentation and p62/SQSTM1-autophagy occur in allograft biopsies of kidney transplant patients with BKPyV nephropathy. JCPyV and SV40 infection similarly disrupt mitochondrial networks, indicating a conserved mechanism facilitating polyomavirus persistence and post-transplant disease.

8.
Drug Dev Res ; 80(1): 19-23, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30343487

RESUMEN

Antibiotic resistance, especially in gram-negative bacteria, is spreading globally and rapidly. Development of new antibiotics lags behind; therefore, novel approaches to the problem of antibiotic resistance are sorely needed and this commentary highlights one relatively unexplored target for drug development: conjugation. Conjugation is a common mechanism of horizontal gene transfer in bacteria that is instrumental in the spread of antibiotic resistance among bacteria. Most resistance genes are found on mobile genetic elements and primarily spread by conjugation. Furthermore, conjugative elements can act as a reservoir to maintain antibiotic resistance in the bacterial population even in the absence of antibiotic selection. Thus, conjugation can spread antibiotic resistance quickly between bacteria of the microbiome and pathogens when selective pressure (antibiotics) is introduced. Potential drug targets include the plasmid-encoded conjugation system and the host-encoded proteins important for conjugation. Ideally, a conjugation inhibitor will be used alongside antibiotics to prevent the spread of resistance to or within pathogens while not acting as a growth inhibitor itself. Inhibiting conjugation will be an important addition to our arsenal of strategies to combat the antibiotic resistance crisis, allowing us to extend the usefulness of antibiotics.


Asunto(s)
Antibacterianos/farmacología , Conjugación Genética/fisiología , Farmacorresistencia Microbiana/fisiología , Animales , Conjugación Genética/efectos de los fármacos , Farmacorresistencia Microbiana/efectos de los fármacos , Humanos , Plásmidos/genética , Plásmidos/metabolismo
9.
J Biophotonics ; 11(10): e201800018, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29785840

RESUMEN

One pertinent complication in bacterial infection is the growth of biofilms, that is, communities of surface-adhered bacteria resilient to antibiotics. Photodynamic inactivation (PDI) has been proposed as an alternative to antibiotic treatment; however, novel techniques complementing standard efficacy measures are required. Herein, we present an approach employing multiphoton microscopy complemented with Airyscan super-resolution microscopy, to visualize the distribution of curcumin in Staphylococcus epidermidis biofilms. The effects of complexation of curcumin with hydroxypropyl-γ-cyclodextrin (HPγCD) were studied. It was shown that HPγCD curcumin demonstrated higher bioavailability in the biofilms compared to curcumin, without affecting the subcellular uptake. Spectral quantification following PDI demonstrates a method for monitoring elimination of biofilms in real time using noninvasive 3D imaging. Additionally, spatially confined 2-photon inactivation was demonstrated for the first time in biofilms. These results support the feasibility of advanced optical microscopy as a sensitive tool for evaluating treatment efficacy in biofilms toward improved mechanistic studies of PDI.


Asunto(s)
Biopelículas/efectos de los fármacos , Biopelículas/efectos de la radiación , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Microscopía Confocal , Fotones , Staphylococcus epidermidis/fisiología , Curcumina/química , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Espacio Intracelular/efectos de la radiación , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/metabolismo , Fármacos Fotosensibilizantes/farmacología , Staphylococcus epidermidis/citología , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/efectos de la radiación , gamma-Ciclodextrinas/química , gamma-Ciclodextrinas/metabolismo , gamma-Ciclodextrinas/farmacología
10.
Mol Microbiol ; 107(1): 57-67, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28963732

RESUMEN

Suramin is one of the first drugs developed in a medicinal chemistry program (Bayer, 1916), and it is still the treatment of choice for the hemolymphatic stage of African sleeping sickness caused by Trypanosoma brucei rhodesiense. Cellular uptake of suramin occurs by endocytosis, and reverse genetic studies with T. b. brucei have linked downregulation of the endocytic pathway to suramin resistance. Here we show that forward selection for suramin resistance in T. brucei spp. cultures is fast, highly reproducible and linked to antigenic variation. Bloodstream-form trypanosomes are covered by a dense coat of variant surface glycoprotein (VSG), which protects them from their mammalian hosts' immune defenses. Each T. brucei genome contains over 2000 different VSG genes, but only one is expressed at a time. An expression switch to one particular VSG, termed VSGSur , correlated with suramin resistance. Reintroduction of the originally expressed VSG gene in resistant T. brucei restored suramin susceptibility. This is the first report of a link between antigenic variation and drug resistance in African trypanosomes.


Asunto(s)
Resistencia a Medicamentos/inmunología , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Animales , Variación Antigénica/inmunología , Genoma , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/inmunología , Suramina/metabolismo , Suramina/farmacología , Trypanosoma brucei brucei/genética , Tripanosomiasis Africana/tratamiento farmacológico , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo
11.
Cell Mol Life Sci ; 73(17): 3387-400, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26973180

RESUMEN

Trypanosoma brucei rhodesiense is one of the causative agents of human sleeping sickness, a fatal disease that is transmitted by tsetse flies and restricted to Sub-Saharan Africa. Here we investigate two independent lines of T. b. rhodesiense that have been selected with the drugs melarsoprol and pentamidine over the course of 2 years, until they exhibited stable cross-resistance to an unprecedented degree. We apply comparative genomics and transcriptomics to identify the underlying mutations. Only few mutations have become fixed during selection. Three genes were affected by mutations in both lines: the aminopurine transporter AT1, the aquaporin AQP2, and the RNA-binding protein UBP1. The melarsoprol-selected line carried a large deletion including the adenosine transporter gene AT1, whereas the pentamidine-selected line carried a heterozygous point mutation in AT1, G430R, which rendered the transporter non-functional. Both resistant lines had lost AQP2, and both lines carried the same point mutation, R131L, in the RNA-binding motif of UBP1. The finding that concomitant deletion of the known resistance genes AT1 and AQP2 in T. b. brucei failed to phenocopy the high levels of resistance of the T. b. rhodesiense mutants indicated a possible role of UBP1 in melarsoprol-pentamidine cross-resistance. However, homozygous in situ expression of UBP1-Leu(131) in T. b. brucei did not affect the sensitivity to melarsoprol or pentamidine.


Asunto(s)
Resistencia a Medicamentos/genética , Genoma de Protozoos , Trypanosoma brucei rhodesiense/genética , Secuencia de Aminoácidos , Acuaporinas/genética , Acuaporinas/metabolismo , Hibridación Genómica Comparativa , ADN Protozoario/química , ADN Protozoario/aislamiento & purificación , ADN Protozoario/metabolismo , Heterocigoto , Humanos , Masculino , Melarsoprol/farmacología , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo , Pruebas de Sensibilidad Parasitaria , Pentamidina/farmacología , Fenotipo , Polimorfismo de Nucleótido Simple , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Alineación de Secuencia , Tripanocidas/farmacología , Trypanosoma brucei rhodesiense/efectos de los fármacos , Trypanosoma brucei rhodesiense/aislamiento & purificación , Tripanosomiasis Africana/diagnóstico , Tripanosomiasis Africana/parasitología
12.
Int J Parasitol Drugs Drug Resist ; 5(2): 65-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26042196

RESUMEN

Aquaglyceroporin-2 is a known determinant of melarsoprol-pentamidine cross-resistance in Trypanosoma brucei brucei laboratory strains. Recently, chimerization at the AQP2-AQP3 tandem locus was described from melarsoprol-pentamidine cross-resistant Trypanosoma brucei gambiense isolates from sleeping sickness patients in the Democratic Republic of the Congo. Here, we demonstrate that reintroduction of wild-type AQP2 into one of these isolates fully restores drug susceptibility while expression of the chimeric AQP2/3 gene in aqp2-aqp3 null T. b. brucei does not. This proves that AQP2-AQP3 chimerization is the cause of melarsoprol-pentamidine cross-resistance in the T. b. gambiense isolates.


Asunto(s)
Acuaporina 2/metabolismo , Acuaporina 3/metabolismo , Melarsoprol/farmacología , Pentamidina/farmacología , Trypanosoma brucei gambiense/efectos de los fármacos , Trypanosoma brucei gambiense/genética , Acuaporina 2/genética , Acuaporina 3/genética , Resistencia a Medicamentos , Regulación de la Expresión Génica/fisiología , Tripanocidas/farmacología
13.
Int J Parasitol Drugs Drug Resist ; 4(1): 55-63, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24596669

RESUMEN

African trypanosomes, like all obligate parasitic protozoa, cannot synthesize purines de novo and import purines from their hosts to build nucleic acids. The purine salvage pathways of Trypanosoma brucei being redundant, none of the involved enzymes is likely to be essential. Nevertheless they can be of pharmacological interest due to their role in activation of purine nucleobase or nucleoside analogues, which only become toxic when converted to nucleotides. Aminopurine antimetabolites, in particular, are potent trypanocides and even adenine itself is toxic to trypanosomes at elevated concentrations. Here we report on the T. brucei adenine phosphoribosyltransferases TbAPRT1 and TbAPRT2, encoded by the two genes Tb927.7.1780 and Tb927.7.1790, located in tandem on chromosome seven. The duplication is syntenic in all available Trypanosoma genomes but not in Leishmania. While TbAPRT1 is cytosolic, TbAPRT2 possesses a glycosomal targeting signal and co-localizes with the glycosomal marker aldolase. Interestingly, the distribution of glycosomal targeting signals among trypanosomatid adenine phosphoribosyltransferases is not consistent with their phylogeny, indicating that the acquisition of adenine salvage to the glycosome happened after the radiation of Trypanosoma. Double null mutant T. brucei Δtbaprt1,2 exhibited no growth phenotype but no longer incorporated exogenous adenine into the nucleotide pool. This, however, did not reduce their sensitivity to adenine. The Δtbaprt1,2 trypanosomes were resistant to the adenine isomer aminopurinol, indicating that it is activated by phosphoribosyl transfer. Aminopurinol was about 1000-fold more toxic to bloodstream-form T. brucei than the corresponding hypoxanthine isomer allopurinol. Aminopurinol uptake was not dependent on the aminopurine permease P2 that has been implicated in drug resistance.

14.
J Antimicrob Chemother ; 69(3): 651-63, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24235095

RESUMEN

OBJECTIVES: Trypanosoma brucei drug transporters include the TbAT1/P2 aminopurine transporter and the high-affinity pentamidine transporter (HAPT1), but the genetic identity of HAPT1 is unknown. We recently reported that loss of T. brucei aquaglyceroporin 2 (TbAQP2) caused melarsoprol/pentamidine cross-resistance (MPXR) in these parasites and the current study aims to delineate the mechanism by which this occurs. METHODS: The TbAQP2 loci of isogenic pairs of drug-susceptible and MPXR strains of T. brucei subspecies were sequenced. Drug susceptibility profiles of trypanosome strains were correlated with expression of mutated TbAQP2 alleles. Pentamidine transport was studied in T. brucei subspecies expressing TbAQP2 variants. RESULTS: All MPXR strains examined contained TbAQP2 deletions or rearrangements, regardless of whether the strains were originally adapted in vitro or in vivo to arsenicals or to pentamidine. The MPXR strains and AQP2 knockout strains had lost HAPT1 activity. Reintroduction of TbAQP2 in MPXR trypanosomes restored susceptibility to the drugs and reinstated HAPT1 activity, but did not change the activity of TbAT1/P2. Expression of TbAQP2 sensitized Leishmania mexicana promastigotes 40-fold to pentamidine and >1000-fold to melaminophenyl arsenicals and induced a high-affinity pentamidine transport activity indistinguishable from HAPT1 by Km and inhibitor profile. Grafting the TbAQP2 selectivity filter amino acid residues onto a chimeric allele of AQP2 and AQP3 partly restored susceptibility to pentamidine and an arsenical. CONCLUSIONS: TbAQP2 mediates high-affinity uptake of pentamidine and melaminophenyl arsenicals in trypanosomes and TbAQP2 encodes the previously reported HAPT1 activity. This finding establishes TbAQP2 as an important drug transporter.


Asunto(s)
Acuagliceroporinas/metabolismo , Resistencia a Medicamentos , Melarsoprol/metabolismo , Pentamidina/metabolismo , Tripanocidas/metabolismo , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/metabolismo , Alelos , Transporte Biológico , Genes Protozoarios , Análisis de Secuencia de ADN
15.
PLoS Negl Trop Dis ; 7(10): e2475, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24130910

RESUMEN

The predominant mechanism of drug resistance in African trypanosomes is decreased drug uptake due to loss-of-function mutations in the genes for the transporters that mediate drug import. The role of transporters as determinants of drug susceptibility is well documented from laboratory-selected Trypanosoma brucei mutants. But clinical isolates, especially of T. b. gambiense, are less amenable to experimental investigation since they do not readily grow in culture without prior adaptation. Here we analyze a selected panel of 16 T. brucei ssp. field isolates that (i) have been adapted to axenic in vitro cultivation and (ii) mostly stem from treatment-refractory cases. For each isolate, we quantify the sensitivity to melarsoprol, pentamidine, and diminazene, and sequence the genomic loci of the transporter genes TbAT1 and TbAQP2. The former encodes the well-characterized aminopurine permease P2 which transports several trypanocides including melarsoprol, pentamidine, and diminazene. We find that diminazene-resistant field isolates of T. b. brucei and T. b. rhodesiense carry the same set of point mutations in TbAT1 that was previously described from lab mutants. Aquaglyceroporin 2 has only recently been identified as a second transporter involved in melarsoprol/pentamidine cross-resistance. Here we describe two different kinds of TbAQP2 mutations found in T. b. gambiense field isolates: simple loss of TbAQP2, or loss of wild-type TbAQP2 allele combined with the formation of a novel type of TbAQP2/3 chimera. The identified mutant T. b. gambiense are 40- to 50-fold less sensitive to pentamidine and 3- to 5-times less sensitive to melarsoprol than the reference isolates. We thus demonstrate for the first time that rearrangements of the TbAQP2/TbAQP3 locus accompanied by TbAQP2 gene loss also occur in the field, and that the T. b. gambiense carrying such mutations correlate with a significantly reduced susceptibility to pentamidine and melarsoprol.


Asunto(s)
Acuaporina 2/genética , Resistencia a Medicamentos , Melarsoprol/farmacología , Mutación , Pentamidina/farmacología , Tripanocidas/farmacología , Trypanosoma brucei gambiense/efectos de los fármacos , Acuaporina 2/metabolismo , ADN Protozoario/química , ADN Protozoario/genética , Humanos , Datos de Secuencia Molecular , Proteínas Protozoarias/genética , Análisis de Secuencia de ADN , Trypanosoma brucei gambiense/genética , Trypanosoma brucei gambiense/aislamiento & purificación , Tripanosomiasis Africana/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA