RESUMEN
Finding faster and simpler ways to screen protein sequence space to enable the identification of new biocatalysts for asymmetric synthesis remains both a challenge and a rate-limiting step in enzyme discovery. Biocatalytic strategies for the synthesis of chiral amines are increasingly attractive and include enzymatic asymmetric reductive amination, which offers an efficient route to many of these high-value compounds. Here we report the discovery of over 300 new imine reductases and the production of a large (384 enzymes) and sequence-diverse panel of imine reductases available for screening. We also report the development of a facile high-throughput screen to interrogate their activity. Through this approach we identified imine reductase biocatalysts capable of accepting structurally demanding ketones and amines, which include the preparative synthesis of N-substituted ß-amino ester derivatives via a dynamic kinetic resolution process, with excellent yields and stereochemical purities.
Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Oxidorreductasas/aislamiento & purificación , Aminación/efectos de los fármacos , Aminas/química , Biocatálisis , Iminas/metabolismo , Cetonas/química , Oxidorreductasas/metabolismo , EstereoisomerismoRESUMEN
The monooxygenase complex is composed of three key proteins, a cytochrome P450 (CYP), the cytochrome P450 oxidoreductase (CPR) and cytochrome b5 and plays a key role in the metabolism and detoxification of xenobiotic substances, including pesticides. In addition, overexpression of these components has been linked to pesticide resistance in several important vectors of disease. Despite this, the monooxygenase complex has not been isolated from the Southern cattle tick Rhipicephalus (Boophilus) microplus, a major disease vector in livestock. Using bioinformatics 115 transcriptomic sequences were analyzed to identify putative pesticide metabolizing CYPs. RACE-PCR was used to amplify the full length sequence of one CYP; CYP3006G8 which displays a high degree of homology to members of the CYP6 and 9 subfamilies, known to metabolize pyrethroids. mRNA expression levels of CYP3006G8 were investigated in 11 strains of R. microplus with differing resistance profiles by qPCR, the results of which indicated a correlation with pyrethroid metabolic resistance. In addition to this gene, the sequences for CPR and cytochrome b5 were also identified and subsequently isolated from R. microplus using PCR. CYP3006G8 is only the third CYP gene isolated from R. microplus and the first to putatively metabolize pesticides. The initial results of expression analysis suggest that CYP3006G8 metabolizes pyrethroids but further biochemical characterization is required to confirm this. Differences in the kinetic parameters of human and mosquito CPR in terms of NADPH binding have been demonstrated and could potentially be used to design species specific pesticides. Similar differences in the tick CPR would confirm that this is a characteristic of heamatophagous arthropods.
Asunto(s)
Acaricidas/farmacología , Resistencia a Medicamentos , Oxigenasas de Función Mixta/aislamiento & purificación , Oxigenasas de Función Mixta/metabolismo , Rhipicephalus/enzimología , Acaricidas/metabolismo , Animales , Biotransformación , Clonación Molecular , Perfilación de la Expresión Génica , Cinética , Oxigenasas de Función Mixta/genética , NADP/metabolismo , Unión Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADNRESUMEN
The poultry red mite Dermanyssus gallinae is best known as a threat to the laying-hen industry; adversely affecting production and hen health and welfare throughout the globe, both directly and through its role as a disease vector. Nevertheless, D. gallinae is being increasingly implemented in dermatological complaints in non-avian hosts, suggesting that its significance may extend beyond poultry. The main objective of the current work was to review the potential of D. gallinae as a wider veterinary and medical threat. Results demonstrated that, as an avian mite, D. gallinae is unsurprisingly an occasional pest of pet birds. However, research also supports that these mites will feed from a range of other animals including: cats, dogs, rodents, rabbits, horses and man. We conclude that although reported cases of D. gallinae infesting mammals are relatively rare, when coupled with the reported genetic plasticity of this species and evidence of permanent infestations on non-avian hosts, potential for host-expansion may exist. The impact of, and mechanisms and risk factors for such expansion are discussed, and suggestions for further work made. Given the potential severity of any level of host-expansion in D. gallinae, we conclude that further research should be urgently conducted to confirm the full extent of the threat posed by D. gallinae to (non-avian) veterinary and medical sectors.
Asunto(s)
Pollos/parasitología , Infestaciones por Ácaros/veterinaria , Enfermedades de las Aves de Corral/parasitología , Trombiculiasis/veterinaria , Trombiculidae/fisiología , Animales , Femenino , Humanos , Masculino , Infestaciones por Ácaros/parasitología , Trombiculiasis/parasitologíaRESUMEN
The use of synthetic pesticides and repellents to target pests of veterinary and medical significance is becoming increasingly problematic. One alternative approach employs the bioactive attributes of plant-derived products (PDPs). These are particularly attractive on the grounds of low mammalian toxicity, short environmental persistence and complex chemistries that should limit development of pest resistance against them.Several pesticides and repellents based on PDPs are already available, and in some cases widely utilised, in modern pest management. Many more have a long history of traditional use in poorer areas of the globe where access to synthetic pesticides is often limited. Preliminary studies support that PDPs could be more widely used to target numerous medical and veterinary pests, with modes of action often specific to invertebrates.Though their current and future potential appears significant, development and deployment of PDPs to target veterinary and medical pests is not without issue. Variable efficacy is widely recognised as a restraint to PDPs for pest control. Identifying and developing natural bioactive PDP components in place of chemically less-stable raw or 'whole' products seems to be the most popular solution to this problem. A limited residual activity, often due to photosensitivity or high volatility, is a further drawback in some cases (though potentially advantageous in others). Nevertheless, encapsulation technologies and other slow-release mechanisms offer strong potential to improve residual activity where needed.The current review provides a summary of existing use and future potential of PDPs against ectoparasites of veterinary and medical significance. Four main types of PDP are considered (pyrethrum, neem, essential oils and plant extracts) for their pesticidal, growth regulating and repellent or deterrent properties. An overview of existing use and research for each is provided, with direction to more extensive reviews given in many sections. Sections to highlight potential issues, modes of action and emerging and future potential are also included.