Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1204224, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441083

RESUMEN

Background: Intracellular communication within the tumour is complex and extracellular vesicles (EVs) have been identified as major contributing factors for the cell-to-cell communication in the local and distant tumour environments. Here, we examine the differential effects of breast cancer (BC) subtype-specific patient serum and cell-line derived EVs in the regulation of T cell mediated immune responses. Methods: Ultracentrifugation was used to isolate EVs from sera of 63 BC patients, 15 healthy volunteers and 4 human breast cancer cell lines. Longitudinal blood draws for EV isolation for patients on neoadjuvant chemotherapy was also performed. Characterization of EVs was performed by Nanoparticle Tracking Analysis (NTA), transmission electron microscopy (TEM) and immunoblotting. CD63 staining was performed on a tissue microarray of 218 BC patients. In-house bioinformatics algorithms were utilized for the computation of EV associated expression scores within The Cancer Genome Atlas (TCGA) and correlated with tumour infiltrating lymphocyte (TIL) scores. In vitro stimulation of PBMCs with EVs from serum and cell-line derived EVs was performed and changes in the immune phenotypes characterized by flow cytometry. Cytokine profiles were assessed using a 105-plex immunoassay or IL10 ELISA. Results: Patients with triple negative breast cancers (TNBCs) exhibited the lowest number of EVs in the sera; whilst the highest was detected in ER+HER2+ cancers; reflected also in the higher level of CD63+ vesicles found within the ER+HER2+ local tumour microenvironment. Transcriptomic analysis of the TCGA data identified that samples assigned with lower EV scores had significantly higher abundance of CD4+ memory activated T cells, T follicular cells and CD8 T cells, plasma, and memory B cells; whilst samples with high EV scores were more enriched for anti-inflammatory M2 macrophages and mast cells. A negative correlation between EV expression scores and stromal TIL counts was also observed. In vitro experiments confirmed that circulating EVs within breast cancer subtypes have functionally differing immunomodulatory capabilities, with EVs from patients with the most aggressive breast cancer subtype (TNBCs) demonstrating the most immune-suppressive phenotype (decreased CD3+HLA-DR+ but increased CD3+PD-L1 T cells, increased CD4+CD127-CD25hi T regulatory cells with associated increase in IL10 cytokine production). In depth assessment of the cytokine modulation triggered by the serum/cell line derived exosomes confirmed differential inflammatory cytokine profiles across differing breast cancer subtypes. Studies using the MDA-231 TNBC breast cancer cell-line derived EVs provided further support that TNBC EVs induced the most immunosuppressive response within PBMCs. Discussion: Our study supports further investigations into how tumour derived EVs are a mechanism that cancers can exploit to promote immune suppression; and breast cancer subtypes produce EVs with differing immunomodulatory capabilities. Understanding the intracellular/extracellular pathways implicated in alteration from active to suppressed immune state may provide a promising way forward for restoring immune competence in specific breast cancer patient populations.


Asunto(s)
Vesículas Extracelulares , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Interleucina-10/metabolismo , Citocinas/metabolismo , Células MCF-7 , Vesículas Extracelulares/metabolismo , Microambiente Tumoral
2.
Clin Cancer Res ; 28(20): 4494-4508, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36161312

RESUMEN

PURPOSE: To identify potential immune targets in post-neoadjuvant chemotherapy (NAC)-resistant triple-negative breast cancer (TNBC) and ER+HER2- breast cancer disease. EXPERIMENTAL DESIGN: Following pathology review, 153 patients were identified as having residual cancer burden (RCB) II/III disease (TNBC n = 80; ER+HER2-n = 73). Baseline pre-NAC samples were available for evaluation for 32 of 80 TNBC and 36 of 73 ER+HER2- cases. Bright-field hematoxylin and eosin assessment allowed for tumor-infiltrating lymphocyte (TIL) evaluation in all cases. Multiplexed immunofluorescence was used to identify the abundance and distribution of immune cell subsets. Levels of checkpoints including PD-1/PD-L1 expression were also quantified. Findings were then validated using expression profiling of cancer and immune-related genes. Cytometry by time-of-flight characterized the dynamic changes in circulating immune cells with NAC. RESULTS: RCB II/III TNBC and ER+HER2- breast cancer were immunologically "cold" at baseline and end of NAC. Although the distribution of immune cell subsets across subtypes was similar, the mRNA expression profiles were both subtype- and chemotherapy-specific. TNBC RCB II/III disease was enriched with genes related to neutrophil degranulation, and displayed strong interplay across immune and cancer pathways. We observed similarities in the dynamic changes in B-cell biology following NAC irrespective of subtype. However, NAC induced changes in the local and circulating tumor immune microenvironment (TIME) that varied by subtype and response. Specifically, in TNBC residual disease, we observed downregulation of stimulatory (CD40/OX40L) and inhibitory (PD-L1/PD-1) receptor expression and an increase in NK cell populations (especially non-cytolytic, exhausted CD56dimCD16-) within both the local TIME and peripheral white cell populations. CONCLUSIONS: This study identifies several potential immunologic pathways in residual disease, which may be targeted to benefit high-risk patients.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Antígeno B7-H1/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Eosina Amarillenta-(YS)/uso terapéutico , Femenino , Hematoxilina , Humanos , Terapia Neoadyuvante , Neutrófilos/metabolismo , Receptor de Muerte Celular Programada 1/uso terapéutico , ARN Mensajero , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Microambiente Tumoral
4.
Cancer Res Commun ; 2(11): 1449-1461, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36824220

RESUMEN

This study offers longitudinal insight into the impact of three SARS-CoV-2 vaccinations on humoral and cellular immunity in patients with solid cancers, patients with hematologic malignancies, and persons without cancer. For all cohorts, virus-neutralizing immunity was significantly depleted over a period of up to 9 months following the second vaccine dose, the one striking exception being IL2 production by SARS-CoV-2 antigen-specific T cells. Immunity was restored by the third vaccine dose, except in a substantial number of patients with hematologic malignancy, for whom both cancer type and treatment schedule were associated with nonresponse. Thus, whereas most patients with myelodysplastic syndrome were conspicuously good responders, some patients with other hematologic malignancies receiving cancer therapies within 2 weeks of vaccination showed no seroconversion despite three vaccine doses. Moreover, SARS-CoV-2 exposure during the course of the study neither prevented immunity waning, even in healthy controls, nor guaranteed vaccine responsiveness. These data offer real-world human immunologic insights that can inform health policy for patients with cancer.


Asunto(s)
COVID-19 , Neoplasias Hematológicas , Neoplasias , Humanos , SARS-CoV-2/genética
5.
Cancer Cell ; 39(11): 1445-1447, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34678151
6.
Lancet Oncol ; 22(6): 765-778, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33930323

RESUMEN

BACKGROUND: The efficacy and safety profiles of vaccines against SARS-CoV-2 in patients with cancer is unknown. We aimed to assess the safety and immunogenicity of the BNT162b2 (Pfizer-BioNTech) vaccine in patients with cancer. METHODS: For this prospective observational study, we recruited patients with cancer and healthy controls (mostly health-care workers) from three London hospitals between Dec 8, 2020, and Feb 18, 2021. Participants who were vaccinated between Dec 8 and Dec 29, 2020, received two 30 µg doses of BNT162b2 administered intramuscularly 21 days apart; patients vaccinated after this date received only one 30 µg dose with a planned follow-up boost at 12 weeks. Blood samples were taken before vaccination and at 3 weeks and 5 weeks after the first vaccination. Where possible, serial nasopharyngeal real-time RT-PCR (rRT-PCR) swab tests were done every 10 days or in cases of symptomatic COVID-19. The coprimary endpoints were seroconversion to SARS-CoV-2 spike (S) protein in patients with cancer following the first vaccination with the BNT162b2 vaccine and the effect of vaccine boosting after 21 days on seroconversion. All participants with available data were included in the safety and immunogenicity analyses. Ongoing follow-up is underway for further blood sampling after the delayed (12-week) vaccine boost. This study is registered with the NHS Health Research Authority and Health and Care Research Wales (REC ID 20/HRA/2031). FINDINGS: 151 patients with cancer (95 patients with solid cancer and 56 patients with haematological cancer) and 54 healthy controls were enrolled. For this interim data analysis of the safety and immunogenicity of vaccinated patients with cancer, samples and data obtained up to March 19, 2021, were analysed. After exclusion of 17 patients who had been exposed to SARS-CoV-2 (detected by either antibody seroconversion or a positive rRT-PCR COVID-19 swab test) from the immunogenicity analysis, the proportion of positive anti-S IgG titres at approximately 21 days following a single vaccine inoculum across the three cohorts were 32 (94%; 95% CI 81-98) of 34 healthy controls; 21 (38%; 26-51) of 56 patients with solid cancer, and eight (18%; 10-32) of 44 patients with haematological cancer. 16 healthy controls, 25 patients with solid cancer, and six patients with haematological cancer received a second dose on day 21. Of the patients with available blood samples 2 weeks following a 21-day vaccine boost, and excluding 17 participants with evidence of previous natural SARS-CoV-2 exposure, 18 (95%; 95% CI 75-99) of 19 patients with solid cancer, 12 (100%; 76-100) of 12 healthy controls, and three (60%; 23-88) of five patients with haematological cancers were seropositive, compared with ten (30%; 17-47) of 33, 18 (86%; 65-95) of 21, and four (11%; 4-25) of 36, respectively, who did not receive a boost. The vaccine was well tolerated; no toxicities were reported in 75 (54%) of 140 patients with cancer following the first dose of BNT162b2, and in 22 (71%) of 31 patients with cancer following the second dose. Similarly, no toxicities were reported in 15 (38%) of 40 healthy controls after the first dose and in five (31%) of 16 after the second dose. Injection-site pain within 7 days following the first dose was the most commonly reported local reaction (23 [35%] of 65 patients with cancer; 12 [48%] of 25 healthy controls). No vaccine-related deaths were reported. INTERPRETATION: In patients with cancer, one dose of the BNT162b2 vaccine yields poor efficacy. Immunogenicity increased significantly in patients with solid cancer within 2 weeks of a vaccine boost at day 21 after the first dose. These data support prioritisation of patients with cancer for an early (day 21) second dose of the BNT162b2 vaccine. FUNDING: King's College London, Cancer Research UK, Wellcome Trust, Rosetrees Trust, and Francis Crick Institute.


Asunto(s)
Vacunas contra la COVID-19/uso terapéutico , COVID-19/inmunología , Neoplasias/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/sangre , Vacuna BNT162 , COVID-19/sangre , COVID-19/complicaciones , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Relación Dosis-Respuesta Inmunológica , Femenino , Humanos , Inmunogenicidad Vacunal/inmunología , Londres/epidemiología , Masculino , Persona de Mediana Edad , Neoplasias/sangre , Neoplasias/complicaciones , Neoplasias/virología , Estudios Prospectivos , SARS-CoV-2 , Gales
7.
Glycobiology ; 31(3): 200-210, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32776095

RESUMEN

Aberrant mucin-type O-linked glycosylation is a common occurrence in cancer where the upregulation of sialyltransferases is often seen leading to the early termination of O-glycan chains. Mucin-type O-linked glycosylation is not limited to mucins and occurs on many cell surface glycoproteins including EGFR, where the number of sites can be limited. Upon EGF ligation, EGFR induces a signaling cascade and may also translocate to the nucleus where it directly regulates gene transcription, a process modulated by Galectin-3 and MUC1 in some cancers. Here, we show that upon EGF binding, breast cancer cells carrying different O-glycans respond by transcribing different gene expression signatures. MMP10, the principal gene upregulated when cells carrying sialylated core 1 glycans were stimulated with EGF, is also upregulated in ER-positive breast carcinoma reported to express high levels of ST3Gal1 and hence mainly core 1 sialylated O-glycans. In contrast, isogenic cells engineered to carry core 2 glycans upregulate CX3CL1 and FGFBP1 and these genes are upregulated in ER-negative breast carcinomas, also known to express longer core 2 O-glycans. Changes in O-glycosylation did not significantly alter signal transduction downstream of EGFR in core 1 or core 2 O-glycan expressing cells. However, striking changes were observed in the formation of an EGFR/galectin-3/MUC1/ß-catenin complex at the cell surface that is present in cells carrying short core 1-based O-glycans but absent in core 2 carrying cells.


Asunto(s)
Neoplasias de la Mama/metabolismo , Mucina-1/metabolismo , Neoplasias de la Mama/patología , Receptores ErbB/metabolismo , Femenino , Glicosilación , Humanos , Receptores de Estrógenos/metabolismo
8.
Commun Biol ; 3(1): 644, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33149188

RESUMEN

The tumour microenvironment plays a crucial role in the growth and progression of cancer, and the presence of tumour-associated macrophages (TAMs) is associated with poor prognosis. Recent studies have demonstrated that TAMs display transcriptomic, phenotypic, functional and geographical diversity. Here we show that a sialylated tumour-associated glycoform of the mucin MUC1, MUC1-ST, through the engagement of Siglec-9 can specifically and independently induce the differentiation of monocytes into TAMs with a unique phenotype that to the best of our knowledge has not previously been described. These TAMs can recruit and prolong the lifespan of neutrophils, inhibit the function of T cells, degrade basement membrane allowing for invasion, are inefficient at phagocytosis, and can induce plasma clotting. This macrophage phenotype is enriched in the stroma at the edge of breast cancer nests and their presence is associated with poor prognosis in breast cancer patients.


Asunto(s)
Macrófagos/fisiología , Monocitos/fisiología , Mucina-1/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Mucina-1/genética
9.
Biochem Soc Trans ; 46(4): 779-788, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-29903935

RESUMEN

Changes in mucin-type O-linked glycosylation are seen in over 90% of breast cancers where increased sialylation is often observed and a change from branched glycans to linear glycans is often seen. There are many mechanisms involved including increased/altered expression of glycosyltransferases and relocalisation to the endoplasmic reticulum of the enzymes responsible for the addition of the first sugar, N-acetyl-d-galactosamine. It is now becoming clear that these changes can contribute to tumour growth and progression by modulating the micro-environment through glycan-sensing lectins expressed on immune cells, by modulating interactions with tumour surface receptors and by binding to selectins. The understanding of how changes in mucin-type O-linked glycosylation influence tumour growth and progression reveals new potential targets for therapeutic intervention in the treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Mucina-1/metabolismo , Acetilgalactosamina/metabolismo , Transporte Biológico , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Progresión de la Enfermedad , Femenino , Regulación Enzimológica de la Expresión Génica , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Aparato de Golgi/enzimología , Aparato de Golgi/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Metástasis de la Neoplasia , Microambiente Tumoral
10.
Biochem Soc Trans ; 46(3): 659-668, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29784646

RESUMEN

Currently, there is renewed interest in attempting to recruit the host immune system to eliminate cancers, and within this renewed activity, MUC1 continues to arouse interest. MUC1 has been considered a possible therapeutic target for the past 30 years as it is up-regulated, aberrantly glycosylated and its polarization is lost in many adenocarcinomas. Moreover, MUC1 is expressed by some haematopoietic cancers, including acute myeloid leukaemia and myeloma. Although multiple clinical trials have been initiated and immune responses have been documented, effective clinical benefit worthy of approval for general application has not as yet been achieved. However, this does not appear to have quelled the interest in MUC1 as a therapeutic target, as shown by the increase in the number of MUC1-based clinical trials initiated in 2017 ( Figure 1). As with all translational studies, incorporating new relevant research findings into therapeutic strategy is difficult. Decisions are made to commit to a specific strategy based on the information and data available when the trial is initiated. However, the time required for preclinical studies and early trials can render the founding concept not always appropriate for proceeding to a larger definitive trial. Here, we summarize the attempts made, to date, to bring MUC1 into the world of cancer immunotherapy and discuss how research findings regarding MUC1 structure and function together with expanded knowledge of its interactions with the tumour environment and immune effector cells could lead to improved therapeutic approaches. ppbiost;46/3/659/BST20170400CF1F1BST-2017-0400CF1Figure 1.Number of MUC1-targeted trials initiated each year.


Asunto(s)
Inmunoterapia , Mucina-1/inmunología , Neoplasias/terapia , Antimetabolitos Antineoplásicos/uso terapéutico , Ensayos Clínicos como Asunto , Terapia Combinada , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapéutico , Glicosilación , Humanos , Mucina-1/química , Mucina-1/fisiología , Neoplasias/tratamiento farmacológico , Microambiente Tumoral , Gemcitabina
11.
Stem Cell Reports ; 4(4): 699-711, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25818813

RESUMEN

Characterization of normal breast stem cells is important for understanding their role in breast development and in breast cancer. However, the identity of these cells is a subject of controversy and their localization in the breast epithelium is not known. In this study, we utilized a novel approach to analyze the morphogenesis of mammary lobules, by combining one-dimensional theoretical models and computer-generated 3D fractals. Comparing predictions of these models with immunohistochemical analysis of tissue sections for candidate stem cell markers, we defined distinct areas where stem cells reside in the mammary lobule. An increased representation of stem cells was found in smaller, less developed lobules compared to larger, more mature lobules, with marked differences in the gland of nulliparous versus parous women and that of BRCA1/2 mutation carriers versus non-carriers.


Asunto(s)
Diferenciación Celular , Glándulas Mamarias Humanas , Organogénesis , Células Madre/citología , Células Madre/metabolismo , Biomarcadores/metabolismo , Epitelio/metabolismo , Femenino , Humanos , Modelos Biológicos , Técnicas de Cultivo de Tejidos
12.
Int J Cancer ; 109(5): 691-7, 2004 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-14999776

RESUMEN

Using a C57Bl/6 mouse model system, where intramuscular (i.m.) injection of full length (FL) MUC1 cDNA protects against subsequent challenge with MUC1-expressing syngeneic tumour cells, we have investigated the importance of the tandem repeat (TR) domain in the induction of T cell-dependent tumour rejection. A MUC1 construct engineered to remove the TR domain (MUC1 0TR) was found to be as effective as the full length MUC1 cDNA in inhibiting the growth of RMA MUC1 cells in C57Bl/6 mice. Protection by i.m. injection of either the FL-MUC1 cDNA or the MUC1 0TR construct depended on the presence of functional CD4+ and CD8+ T cells. Specific CD8+ T cell responses, however, could not be detected in vitro using mouse spleen cells taken after only cDNA injection, but only after challenge in vivo with MUC1-expressing tumour cells. To attempt to enhance the responses of CD4+ T cells, a cDNA construct was developed, where the extracellular domain of MUC1 was fused to the transmembrane and cytoplasmic domain of Lamp1 (MUC1/Lamp1). This construct was equally effective in inducing tumour rejection but did not induce MUC1-specific CTL in mice before challenge with MUC1-expressing tumour cells. Our results indicate that, in this model, T cell responses necessary for protection against MUC1-expressing tumours that are induced by IM injection of MUC1 cDNA are independent of the tandem repeat domain as well as the transmembrane and cytoplasmic domains. A low level of protection was seen with all constructs in BALB/c mice, which show a defect in Th1 responses. C57Bl/6xBALB/c hybrids were, however, well protected against both H2(d) and H2(b) expressing tumour challenge, emphasizing the importance of the host background.


Asunto(s)
Antígenos CD/administración & dosificación , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , ADN Complementario/administración & dosificación , Mucina-1/administración & dosificación , Fragmentos de Péptidos/administración & dosificación , Secuencias Repetidas en Tándem , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Inyecciones Intramusculares , Proteína 1 de la Membrana Asociada a los Lisosomas , Proteínas de Membrana de los Lisosomas , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mucina-1/genética , Mucina-1/inmunología , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Secuencias Repetidas en Tándem/inmunología , Factores de Tiempo
13.
Biochem J ; 376(Pt 3): 677-86, 2003 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-12950230

RESUMEN

We have developed an expression system for the production of large quantities of recombinant MUC1 mucin in CHO-K1 (Chinese-hamster ovary K1) cells. The extracellular part of human MUC1, including 16 MUC1 tandem repeats, was produced as a fusion protein with murine IgG Fc, with an intervening enterokinase cleavage site for the removal of the Fc tail. Stable MUC1-IgG-producing CHO-K1 clones were generated and were found to secrete MUC1-IgG into the culture medium. After adaptation to suspension culture in protein-free medium in a bioreactor, the fusion protein was secreted in large quantities (100 mg/l per day) into the culture supernatant. From there, MUC1 could be purified to homogeneity using a two-step procedure including enterokinase cleavage and ion-exchange chromatography. Capillary liquid chromatography MS of released oligosaccharides from CHO-K1-produced MUC1 identified the main O-glycans as Galbeta1-3GalNAc (core 1) and mono- and di-sialylated core 1. The glycans occupied on average 4.3 of the five potential O-glycosylation sites in the tandem repeats, as determined by nano-liquid chromatography MS of partially deglycosylated Clostripain-digested protein. A very similar O-glycan profile and site occupancy was found in MUC1-IgG produced in the breast carcinoma cell line T47D, which has O-glycosylation typical for breast cancer. In contrast, MUC1-IgG produced in another breast cancer cell line, MCF-7, showed a more complex pattern with both core 1- and core 2-based O-glycans. This is the first reported production of large quantities of recombinant MUC1 with a breast cancer-like O-glycosylation that could be used for the immunotherapy of breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Mucina-1/genética , Aminoácidos/análisis , Animales , Anticuerpos Monoclonales/inmunología , Células CHO , Secuencia de Carbohidratos , Carcinoma/metabolismo , Línea Celular Tumoral , Cricetinae , Femenino , Glicosilación , Humanos , Inmunoglobulina G/genética , Datos de Secuencia Molecular , Mucina-1/química , Mucina-1/metabolismo , Polisacáridos/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo
14.
J Mammary Gland Biol Neoplasia ; 7(2): 209-21, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12463741

RESUMEN

The membrane epithelial mucin MUC1 is expressed at the luminal surface of most simple epithelial cells, but expression is greatly increased at lactation and in most breast carcinomas. The increase in level of expression of MUC1 in breast cancer is accompanied by changes in the profile of glycosyl transferases involved in the synthesis of the O-glycans attached to the MUC1 core protein. The cancer-associated mucin is therefore structurally different from the normal mucin, and expresses novel B cell epitopes. MUC1 antibodies are used for in vivo targeting of breast and ovarian tumors, and there is considerable interest in MUC1 as a possible target antigen for the immunotherapy of breast cancer. The different glycoforms can affect cell interactions differently, depending on whether specific interactions with lectins occur. In the absence of such lectin interactions, the long sialylated and negatively charged molecule can inhibit intercellular interactions between other cell surface molecules. The potential role of the different components of the immune system in MUC1 responses are discussed within the framework of how to develop logical strategies for designing clinical studies.


Asunto(s)
Mucina-1/fisiología , Neoplasias/inmunología , Animales , Humanos , Mucina-1/inmunología , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...