Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39024562

RESUMEN

The interest in mercury radioisotopes, 197mHg (t1/2 = 23.8 h) and 197gHg (t1/2 = 64.14 h), has recently been reignited by the dual diagnostic and therapeutic nature of their nuclear decays. These isotopes emit γ-rays suitable for single photon emission computed tomography imaging and Auger electrons which can be exploited for treating small and metastatic tumors. However, the clinical utilization of 197m/gHg radionuclides is obstructed by the lack of chelators capable of securely binding them to tumor-seeking vectors. This work aims to address this challenge by investigating a series of chemically tailored macrocyclic platforms with sulfur-containing side arms, namely, 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO4S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO3S), and 1,7-bis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane-4,10-diacetic acid (DO2A2S). 1,4,7,10-Tetrazacyclododecane-1,4,7,10-tetracetic acid (DOTA), the widest explored chelator in nuclear medicine, and the nonfunctionalized backbone 1,4,7,10-tetrazacyclododecane (cyclen) were considered as well to shed light on the role of the sulfanyl arms in the metal coordination. To this purpose, a comprehensive experimental and theoretical study encompassing aqueous coordination chemistry investigations through potentiometry, nuclear magnetic resonance (NMR) spectroscopy, X-ray crystallography, and density functional theory (DFT) calculations, as well as concentration- and temperature-dependent [197m/gHg]Hg2+ radiolabeling and in vitro stability assays in human serum was conducted. The obtained results reveal that the investigated chelators rapidly complex Hg2+ in aqueous media, forming extremely thermodynamically stable 1:1 metal-to-ligand complexes with superior stabilities compared to those of DOTA or cyclen. These complexes exhibited 6- to 8-fold coordination environments, with donors statically bound to the metal center, as evidenced by the presence of 1H-199Hg spin-spin coupling via NMR. A similar octacoordinated environment was also found for DOTA in both solution and solid state, but in this case, multiple slowly exchanging conformers were detected at ambient temperature. The sulfur-rich ligands quantitatively incorporate cyclotron-produced [197m/gHg]Hg2+ under relatively mild reaction conditions (pH = 7 and T = 50 °C), with the resulting radioactive complexes exhibiting decent stability in human serum (up to 75% after 24 h). By developing viable chelators and understanding the impact of structural modifications, our research addresses the scarcity of suitable chelating agents for 197m/gHg, offering promise for its future in vivo application as a theranostic Auger-emitter radiometal.

2.
Dalton Trans ; 53(22): 9323-9329, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38747257

RESUMEN

Two N-alkyloxy-N'-phenylimidazolium proligands and the corresponding platinum(II) cyclometalated N-alkyloxyimidazol-2-ylidene complexes with ß-diketonate auxiliary ligands, [(CNOHC^C*)Pt(L∩L)] (L∩L = acetyacetonate (acac) or 1,3-bis(2,4,6-trimethylphenyl)-propane-1,3-dionato (mesacac)) were synthesized and fully characterized. In addition, a Au(I) monocarbene complex was synthesized, isolated and characterized. Solid-state structures of two cyclometalated platinum(II) NOHC complexes and the Au(I) NOHC complex were obtained providing structural proof.

3.
Chemistry ; 29(67): e202302273, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37695746

RESUMEN

A series of six Mn(I) complexes with general formula [MnBr(bisNHC)(CO)3 ], having a bidentate bis(N-heterocyclic carbene) ligand (bisNHC), has been developed by varying the bridging group between the NHC donors, the nitrogen wingtip substituents and the heterocyclic ring. The synthesis of the complexes has been accomplished by in situ transmetalation of the bisNHC from the corresponding silver(I) complexes. Removal of the bromide anion affords the corresponding solvento complexes [Mn(bisNHC)(CO)3 (CH3 CN)](BF4 ). The influence of the bisNHC structure on its electron donor ability has been evaluated by FTIR and 13 C NMR spectroscopy, both in the neutral and cationic complexes. Finally, the isolated Mn(I)-bisNHC complexes have been employed as homogeneous catalysts in the reductive N-formylation and N-methylation of amines with CO2 as C1 source and phenylsilane as reducing agent, showing a high selectivity for the N-methylated product. Preliminary mechanistic investigations suggest that, in the adopted reaction conditions, the formylated product can be formed via different reaction pathways, either metal-catalyzed or not, while the methylation reaction requires the use of the Mn(I) catalyst.

4.
RSC Adv ; 13(36): 25425-25436, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37636510

RESUMEN

Gold(i) triarylphosphane compounds are a well-known class of coordination compounds displaying from mild to strong emissive properties. Mechanochemical approaches to the preparation, spectroscopic characterization, X-ray diffraction structural determination, and photophysical studies of green emissive neutral linear monophosphane or neutral pseudo-T-shaped or cationic bis-phosphane gold(i) compounds, are herein discussed. The mechanochemical approach to the preparation of gold(i) derivatives was particularly successful for ligands bearing the carboxylic group, while the preparation with esterified ligands yields better results with solvent-mediated methods. The introduction of carboxyl or ester substituents in one aryl group favors the ligand-centered emissions. The analysis of the origin of the emissions was elucidated on the basis of DFT calculations, addressing the emissive behavior to ligand-centered excited states, strongly affected by supramolecular reversible hydrogen bonding aggregation. The study indicates that the ligand with the carboxylic group is particularly suitable for the mechanochemical preparation of emissive gold(i) complexes for material science applications.

5.
Antibiotics (Basel) ; 12(7)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37508200

RESUMEN

Two antimicrobial agents such as silver nanoparticles (AgNPs) and titanium dioxide (TiO2) have been formulated with natural polysaccharides (chitosan or alginate) to develop innovative inks for the rapid, customizable, and extremely accurate manufacturing of 3D-printed scaffolds useful as dressings in the treatment of infected skin wounds. Suitable chemical-physical properties for the applicability of these innovative devices were demonstrated through the evaluation of water content (88-93%), mechanical strength (Young's modulus 0.23-0.6 MPa), elasticity, and morphology. The antimicrobial tests performed against Staphylococcus aureus and Pseudomonas aeruginosa demonstrated the antimicrobial activities against Gram+ and Gram- bacteria of AgNPs and TiO2 agents embedded in the chitosan (CH) or alginate (ALG) macroporous 3D hydrogels (AgNPs MIC starting from 5 µg/mL). The biocompatibility of chitosan was widely demonstrated using cell viability tests and was higher than that observed for alginate. Constructs containing AgNPs at 10 µg/mL concentration level did not significantly alter cell viability as well as the presence of titanium dioxide; cytotoxicity towards human fibroblasts was observed starting with an AgNPs concentration of 100 µg/mL. In conclusions, the 3D-printed dressings developed here are cheap, highly defined, easy to manufacture and further apply in personalized antimicrobial medicine applications.

6.
Inorg Chem ; 62(4): 1383-1393, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36638827

RESUMEN

Herein, we report a new method to synthesize molecular gold nanoclusters (AuNCs) stabilized by phosphine (PR3) and di-N-heterocyclic carbene (di-NHC) ligands. The interaction of di-NHC gold(I) complexes, with the general formula [(di-NHC)Au2Cl2] with well-known [Au11(PPh3)8Cl2]Cl clusters provides three new classes of AuNCs through a controllable reaction sequence. The synthesis involves an initial ligand metathesis reaction to produce [Au11(di-NHC)(PPh3)6Cl2]+ (type 1 clusters), followed by a thermally induced rearrangement/metal complex addition with the formation of Au13 clusters [Au13(di-NHC)2(PPh3)4Cl4]+ (type 2 clusters). Finally, an additional metathesis process yields [Au13(di-NHC)3(PPh3)3Cl3]2+ (type 3 clusters). The electronic and steric properties of the employed di-NHC ligand affect the product distribution, leading to the isolation and full characterization of different clusters as the main product. A type 3 cluster has been also structurally characterized and was preliminarily found to be strongly emissive in solution.

7.
Molecules ; 27(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35458588

RESUMEN

The A2A adenosine receptor (A2AAR) is one of the four subtypes activated by nucleoside adenosine, and the molecules able to selectively counteract its action are attractive tools for neurodegenerative disorders. In order to find novel A2AAR ligands, two series of compounds based on purine and triazolotriazine scaffolds were synthesized and tested at ARs. Compound 13 was also tested in an in vitro model of neuroinflammation. Some compounds were found to possess high affinity for A2AAR, and it was observed that compound 13 exerted anti-inflammatory properties in microglial cells. Molecular modeling studies results were in good agreement with the binding affinity data and underlined that triazolotriazine and purine scaffolds are interchangeable only when 5- and 2-positions of the triazolotriazine moiety (corresponding to the purine 2- and 8-positions) are substituted.


Asunto(s)
Antagonistas del Receptor de Adenosina A2 , Antagonistas de Receptores Purinérgicos P1 , Antagonistas del Receptor de Adenosina A2/química , Antagonistas del Receptor de Adenosina A2/farmacología , Antagonistas de Receptores Purinérgicos P1/farmacología , Purinas/química , Receptor de Adenosina A2A/metabolismo , Relación Estructura-Actividad
8.
Inorg Chem ; 61(8): 3527-3539, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35166538

RESUMEN

Coinage metal cyclic trinuclear compounds (CTCs) are an emerging class of metal coordination compounds that are valuable for many fine optoelectronic applications, even though the reactivity dependence by the different bridging ligands remains somewhat unclear. In this work, to furnish some hints to unravel the effect of substituents on the chemistry of Au(I) CTCs made of a specific class of bridging ligand, we have considered two imidazolate Au(I) CTCs and the effect of different substituents on the pyrrolic N atoms relative to classic metal oxidations with I2 or by probing electrophilic additions. Experimental suggestions depict a thin borderline between the addition of MeI to the N-methyl or N-benzyl imidazolyl CTCs, which afford the oxidized CTC in the former and the ring opening of the CTC and the formation of carbene species in the latter. Moreover, the reactions with iodine yield to the oxidation of the metal centers for the former and just of a metal center in the latter, even in molar excess of iodine. The analysis of the bond distances in the X-ray crystal structures of the oxidized highlights that Au(III)-C and Au(III)-N bonds are longer than observed for Au(I)-C and Au(I)-N bonds, as formally not expected for Au(III) centers. Computational studies converge on the attribution of these discrepancies to an additional case of inverted ligand field (ILF), which solves the question with a new interpretation of the Au(I)-ligand bonding in the oxidized CTCs, which furnishes a new interpretation of the Au(I)-ligand bonding in the oxidized CTCs, opening a discussion about addition/oxidation reactions. Finally, the theoretical studies outputs depict energy profiles that are compatible with the experimental results obtained in the reaction of the two CTCs toward the addition of I2, MeI, and HCl.

9.
Dalton Trans ; 50(38): 13554-13560, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34505859

RESUMEN

A small library of dinuclear gold(I) complexes with the title ligands has been prepared, encompassing neutral, mono- and dicationic complexes. The luminescence properties of the complexes in the solid state have been evaluated, and it turns out that neutral and monocationic complexes not presenting a rigid metallamacrocyclic structure can exhibit rather strong emissions that extend towards the red region of the visible spectrum. The in vitro anticancer activity of the complexes has been also preliminarly evaluated; cytotoxicity seems to correlate with complex lipophilicity, whereas selectivity towards cancer cells can be apparently enhanced upon a judicious choice of the ligands.


Asunto(s)
Antineoplásicos/síntesis química , Complejos de Coordinación/química , Oro/química , Metano/análogos & derivados , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/farmacología , Cristalografía por Rayos X , Humanos , Ligandos , Metano/química , Conformación Molecular
10.
J Hazard Mater ; 410: 124585, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33288336

RESUMEN

Polyamidoamines are low cost and easily synthesized materials that may find applications in cations sequestration and water treatment. In this paper a new amido-aminoacid ligand containing methionine has been designed as a monomeric model of the corresponding polyamidoamine. The amido-aminoacid ligand has been synthesized in high yield, by reacting acrylamide and methionine via aza-Michael addition in water and mild temperature conditions. The reaction has been monitored by NMR and Raman spectroscopies and the crystal structure has been determined by X-ray diffraction analysis. The coordination ability of the ligand towards Cu2+ cations in water, as well as its affinity for Ni2+ and Co2+ has been studied by potentiometric and spectrophotometric techniques. The divalent metal cations sequestration from water may occur with sequential selection by changing the pH of the solution. The copper complex with two coordinated ligands has been fully characterized in the solid state by single crystal X-ray diffraction. The results are discussed with a view to use these materials in the treatment of water contaminated by toxic transition metal ions.

11.
Nanomaterials (Basel) ; 10(5)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32353965

RESUMEN

Here, a formulation of silver nanoparticles (AgNPs) and two natural polymers such as alginate (ALG) and nanocrystalline cellulose (CNC) was developed for the 3D printing of scaffolds with large surface area, improved mechanical resistance and sustained capabilities to promote antimicrobial and cytotoxic effects. Mechanical resistance, water content, morphological characterization and silver distribution of the scaffolds were provided. As for applications, a comparable antimicrobial potency against S. aureus and P. aeruginosa was demonstrated by in vitro tests as function of the AgNP concentration in the scaffold (Minimal Inhibitory Concentration value: 10 mg/mL). By reusing the 3D system the antimicrobial efficacy was demonstrated over at least three applications. The cytotoxicity effects caused by administration of AgNPs to hepatocellular carcinoma (HepG2) cell culture through ALG and ALG/CNC scaffold were discussed as a function of time and dose. Finally, the liquid chromatography-mass spectrometry (LC-MS) technique was used for targeted analysis of pro-apoptotic initiation and executioner caspases, anti-apoptotic and proliferative proteins and the hepatocyte growth factor, and provided insights about molecular mechanisms involved in cell death induction.

12.
Dalton Trans ; 49(8): 2696-2705, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32049077

RESUMEN

Iridium complexes [IrClCp*diNHC]PF6, with N-heterocyclic dicarbene (diNHC) and pentamethylcyclopentadienyl (Cp*) ligands, have been investigated in light driven water oxidation catalysis within the Ru(bpy)32+/S2O82- cycle (bpy = 2,2'-bipyridine). In particular, the effect of different diNHC ligands was evaluated by employing the complex 1a (diNHC = 1,1'-dimethyl-3,3'-ethylenediimidazol-2,2'-diylidene) and the novel and structurally characterised 2 (diNHC = 1,1'-dimethyl-3,3'-ethylene-5,5'-dibromodiimidazol-2,2'-diylidene) and 3 (diNHC = 1,1'-dimethyl-3,3'-ethylene-dibenzimidazol-2,2'-diylidene). The presented results include: (i) a photon management analysis of the 1a/Ru(bpy)32+/S2O82- system, revealing two regimes of O2 evolution rate, being dependent on the light intensity at low photon flux, where the system reaches an overall quantum yield up to 0.17 ± 0.01 (quantum efficiency 34 ± 2%), while being independent of light intensity at high photon flux thus indicating a change of limiting step; (ii) a trend of O2 evolution activity that follows the order 1a > 2 > 3 both under low and high photon flux conditions, with the reactivity that is favoured by the electron donating nature of the diNHC ligand, quantified on the basis of the carbene carbon chemical shift; (iii) an analogous trend also in the bimolecular rate constants of electron transfer kET from the iridium species to photogenerated Ru(bpy)33+, with kET values in the range 4.2-6.1 × 104 M-1 s-1, thus implying a significant reorganisation energy to the iridium sphere; (iv) the evolution of 1a, as the most active Ir species in the series, to mononuclear iridium species with lower molecular weight and originating from oxidative transformation of the organic ligand scaffold, as proven by converging UV-Vis, MALDI-MS and 1H-NMR evidences. These results can be used for the further design and engineering of novel catalysts.

13.
Carbohydr Polym ; 231: 115773, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31888832

RESUMEN

Waste paper is an environmentally friendly source of cellulosic material. Here we propose a new treatment based on nanocrystalline cellulose (CNC) for paper preservation and consolidation. Suspensions of CNC were prepared by sulfuric acid hydrolysis using waste paper as cellulose source (CNCWP) and compared with CNC from cotton linter (CNCCL). Both CNCs were obtained with good yield, showing high crystallinity index and comparable morphology, as demonstrated by DLS-ELS, XRD, FTIR, Raman and TEM analyses. CNCs were mixed with silver nanoparticles (CNC/Ag) and their biocidal activity was tested against Escherichia coli and Bacillus subtilis, measuring the minimum inhibitory concentration. CNCs were exploited as treatments for biocidal activity and consolidation on Whatman paper. The presence of silver nanoparticles doesn't affect aesthetic appearance of the original paper and prevents the growth of Aspergillus niger fungus. Mechanical tests demonstrated that the coatings by CNC based products improve stretch and toughness of the paper support.

14.
ACS Omega ; 4(2): 4192-4205, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-31459629

RESUMEN

Novel silver(I), gold(I), and palladium(II) complexes were synthesized with bidentate heteroditopic carbene ligands that combine an imidazol-2-ylidene (nNHC) with a 1,2,3-triazol-5-ylidene (tzNHC) connected by a propylene bridge. The silver(I) and gold(I) complexes were dinuclear species, [M2(nNHC-tzNHC)2](PF6)2 (M = Ag or Au), with the two bidentate ligands bridging the metal centers, whereas in the palladium(II) complex [Pd(nNHC-tzNHC)2](PF6)2, the two ligands were chelated on the same metal center. Because of the presence of two different carbene units, isomers were observed for the gold(I) and palladium(II) complexes. The molecular structures of the head-to-tail isomer for gold(I) complexes, with a twisted or folded-syn conformation of the bridge between the carbene units, were determined by X-ray diffraction analysis. The study was completed with a systematic structural investigation through density functional theory (DFT) calculations. For palladium(II) species, the head-to-head form was structurally characterized. The dinuclear gold(I) complexes were emissive in the solid state in the blue region (PLQY up to 8%); time-dependent density functional theory (abbreviated as TD-DFT) calculations disclosed that the absorption bands have metal-to-ligand-charge-transfer character and evidenced that the emission occurs from the T1 level (phosphorescence).

15.
Water Res ; 163: 114841, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31306940

RESUMEN

TiO2-supported chitosan scaffolds (TiO2/CS) are here proposed as promising material for wastewater treatment, in particular for the removal of pharmaceutical compounds. TiO2/CS are tested for the amoxicillin photodegradation under UV/Vis irradiation. Amoxicillin (AMX) is an antibiotic of the beta-lactam family. Due to the release of antibiotics in wastewater and their persistence in the environment, harmful effects can develop on the aquatic and terrestrial organisms. TiO2 chitosan scaffolds with photocatalytic activity for wastewater remediation have been prepared by 3D printing using commercial P25-TiO2. The formulation for the 3D printer was prepared by dispersion of chitosan and TiO2 in powder form at the concentration 6% w/v and 1% w/v, respectively. The TiO2 particles (crystalline anatase and rutile phases) embedded in the chitosan have a size of about 20 nm, like in the starting material, as verified by X-ray diffraction and Raman spectroscopy and are homogeneously distributed in the scaffold, also after repeated photocatalytic tests, as revealed by SEM-EDS. The mechanical properties of the 3D structures are suitable for the targeted application as they can be easily handled without breakage. The AMX photodegradation efficiency under light irradiation by TiO2/CS made with scaffolds of different thicknesses (3, 5, 15 layers), was assessed in water by means of UV-Vis absorption and HPLC/UV measurements, at two different AMX:TiO2 molar ratios: 1/100 and 1/10. The 3D printed TiO2/CS system, even after repeated cycles, shows a high photodegradation efficiency, compared to the direct AMX photolysis. A zero-order kinetics for TiO2 supported photodegradation was found, whereas a pseudo-first order was observed for water dispersed TiO2. Mass spectrometry analysis revealed the presence of AMX degradates such as penilloic and penicilloic acids and diketopiperazine. The proposed 3D printed chitosan scaffolds may be used as reusable substrate for the TiO2 photocatalytic degradation of antibiotic pollutants in wastewater.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Amoxicilina , Catálisis , Fotólisis , Impresión Tridimensional , Titanio , Agua
16.
Carbohydr Polym ; 202: 164-171, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30286989

RESUMEN

Novel bio-inspired materials derived from crystalline nanocellulose (CNC) have been tested as wood consolidants. A suspension of CNC, produced by acid hydrolysis of cellulose and used as such or mixed with lignin and/or siloxane derivatives (PDMS), was applied on rotted wood samples of Norway spruce. X-Ray diffraction analysis on CNC powder showed high crystallinity index. Dynamic light scattering (DLS) measurement indicated a nearly uniform particle size distribution with an average hydrodynamic diameter for pure CNC smaller than that in the mixtures. Raman and FTIR spectroscopies suggested interactions between lignin, PDMS and CNC components. The storage modulus of wood samples, measured by Dynamic Mechanical Analysis on the same specimen before and after consolidation, confirmed the efficiency of pure CNC, which displayed a considerable improvement of stiffness. A substantial increase of E' was observed particularly for most decayed classes. These results suggest a closer interaction between nanocellulose and decayed wood.

17.
Acta Crystallogr E Crystallogr Commun ; 74(Pt 5): 587-593, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29850073

RESUMEN

Two unprecedented solid phases involving the 3,7-bis-(di-methyl-amino)-pheno-thia-zin-5-ium cation, i.e. methyl-ene blue (MB+ ), have been obtained and structurally characterized. In the crystals of 3,7-bis-(di-methyl-amino)-pheno-thia-zin-5-ium chloride dihydrate, C16H18N3S+·Cl-·2H2O (I) and 3,7-bis-(di-methyl-amino)-pheno-thia-zinium bis-ulfite, C16H18N3S+·HSO4- (II), the cationic dye mol-ecules are planar and disposed in an anti-parallel mode, showing π-π stacking inter-actions, with mean inter-planar distances of 3.326 (4) and 3.550 (3) Šin (I) and (II), respectively. In compound (I), whose phase was found affected by merohedral twinning [BASF = 0.185 (3)], the presence of water mol-ecules allows a network of hydrogen bonds involving MB+ as both a donor and an acceptor, whereas in compound (II), the homo-inter-action of the anions causes an effective absence of classical hydrogen-bond donors. This substantial difference has important consequences for the stacking geometry and supra-molecular inter-actions of the MB+ cations, which are analysed by Hirshfeld fingerprint plots and subsequently discussed.

18.
Dalton Trans ; 47(3): 935-945, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29260150

RESUMEN

Treatment of the tricationic gold(iii) [Au(MeImCH2ImMe)2](PF6)3 complex 1-3PF6 (Im = imidazol-2-ylidene) with excess halides affords complexes 1-3X (X = Cl, Br, and I), resulting from counter anion PF6-/X- exchange. The 1H chemical shift of the CH3 groups and particularly that of the CH2 linker in DMSO-d6 are different in the three complexes, thus suggesting selective XHC interactions. Complex 13+ can therefore be used as a halide sensor in DMSO and water. The host-guest interaction between the tricationic gold(iii) complex and the halides Cl-, Br- and I- in solution and in the solid state has been investigated by means of NMR titration experiments, DFT calculations and X-ray structure analysis. The electrostatic interaction between the halides and the triple formal positive charge on the metal centre, together with the CHX hydrogen bonding between the NHC ligand and halides, contributes to the formation of stable supramolecular aggregates in solution and in the solid state. The complexing properties of 13+ are strongly influenced by the nature of the solvent. Formation of the 1 : 1 and 1 : 2 species (1X2+ and 1X2+) is observed in DMSO-d6, while that of only the 1 : 1 aggregates (1X2+) is observed in D2O (X = Cl, Br, and I). Moreover, the selectivity towards the various halides is reversed in the two solvents, being in the order Cl- > Br- > I- in DMSO-d6 and I- > Br- > Cl- in D2O. The formation constants of the species 1X2+ and 1X2+ in DMSO and 1X2+ in water have been determined by fitting the NMR titration curves.

19.
Inorg Chem ; 56(6): 3512-3516, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28240887

RESUMEN

The aromatic methylene blue cation (MB+) shows unprecedented ligand behavior in the X-ray structures of the trigonal-planar (TP) complexes MBMCl2 (M = CuI, AgI). The two isostructural compounds were exclusively synthesized by grinding together methylene blue chloride and MCl solids. Only in the case of AuCl did the technique lead to a different, yet isoformular, AuI derivative with separated MB+ and AuCl2- counterions and no direct N-Au linkage. While the density functional theory (DFT) molecular modeling failed in reproducing the isolated Cu and Ag complexes, the solid-state program CRYSTAL satisfactorily provided for Cu the correct TP building block associated with a highly compact π stacking of the MB+ ligands. In this respect, the dispersion interactions, evaluated with the DFT functional, provide to the system an extra energy, which likely supports the unprecedented metal coordination of the MB+ cation. The feature seems governed by subtle chemical factors, such as, for instance, the selected metal ion of the coinage triad. Thus, the electronically consistent AuI ion does not form the analogous TP building block because of a looser supramolecular arrangement. In conclusion, while a given crystalline design is generally fixed by the nature of the building block, a peculiarly efficient supramolecular packing may stabilize an otherwise unattainable metal complex.

20.
Fitoterapia ; 117: 52-60, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28069487

RESUMEN

The industrial extraction and further applications of isofuranodiene are limited because at room temperature it spontaneously converts to curzerene, a structurally less active isomer. This work definitively identified the structure of isofuranodiene in the solid state, showing the two methyl groups in syn position. In addition, two bioactive metal cations, namely, silver(I) and copper(II) ions, were used in the attempt to obtain the chemical stability of isofuranodiene: in the case of silver(I), a labile adduct was formed, while in the case of copper(II), a more stable 1:1 adduct was achieved. In the former, the presence of silver did not significantly affect the biological activities of isofuranodiene, while in the latter, the copper(II) coordination suppressed them. The biological activities of the isofuranodiene adducts were then evaluated as antiproliferative agents against human tumor cell lines (HCT116, MDA-MB 231, and T98G). In addition, for the first time, isofuranodiene was tested as an inhibitor of DHFR (DiHydroFolateReductase) from Escherichia coli. Anticancer activity was observed in the isofuranodiene with the AgCF3SO3 adduct, in the tested cell lines, with IC50 values ranging from 4.89µM to 13.06µM, while inhibition assays highlighted a Ki of 6.22µM for isofuranodiene and of 0.17µM for the related silver adduct. Docking studies indicated a binding mode score of -6.83Kcal/mol for isofuranodiene, and an energy value of -11.82Kcal/mol for methotrexate (a classic DHFR inhibitor).


Asunto(s)
Antineoplásicos/química , Antagonistas del Ácido Fólico/química , Furanos/química , Plata/química , Línea Celular Tumoral , Cobre/química , Escherichia coli/enzimología , Furanos/síntesis química , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...