Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
EBioMedicine ; 94: 104714, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37454552

RESUMEN

BACKGROUND: Disturbed hepatic energy metabolism contributes to non-alcoholic fatty liver (NAFLD), but the development of changes over time and obesity- or diabetes-related mechanisms remained unclear. METHODS: Two-day old male C57BL/6j mice received streptozotocin (STZ) or placebo (PLC) and then high-fat (HFD) or regular chow diet (RCD) from week 4 (W4) to either W8 or W16, yielding control [CTRL = PLC + RCD], diabetes [DIAB = STZ + RCD], obesity [OBES = PLC + HFD] and diabetes-related non-alcoholic steatohepatitis [NASH = STZ + HFD] models. Mitochondrial respiration was measured by high-resolution respirometry and insulin-sensitive glucose metabolism by hyperinsulinemic-euglycemic clamps with stable isotope dilution. FINDINGS: NASH showed higher steatosis and NAFLD activity already at W8 and liver fibrosis at W16 (all p < 0.01 vs CTRL). Ballooning was increased in DIAB and NASH at W16 (p < 0.01 vs CTRL). At W16, insulin sensitivity was 47%, 58% and 75% lower in DIAB, NASH and OBES (p < 0.001 vs CTRL). Hepatic uncoupled fatty acid oxidation (FAO)-associated respiration was reduced in OBES at W8, but doubled in DIAB and NASH at W16 (p < 0.01 vs CTRL) and correlated with biomarkers of unfolded protein response (UPR), oxidative stress and hepatic expression of certain enzymes (acetyl-CoA carboxylase 2, Acc2; carnitine palmitoyltransferase I, Cpt1a). Tricarboxylic acid cycle (TCA)-driven respiration was lower in OBES at W8 and doubled in DIAB at W16 (p < 0.0001 vs CTRL), which positively correlated with expression of genes related to lipolysis. INTERPRETATION: Hepatic mitochondria adapt to various metabolic challenges with increasing FAO-driven respiration, which is linked to dysfunctional UPR, systemic oxidative stress, insulin resistance and altered lipid metabolism. In a diabetes model, higher TCA-linked respiration reflected mitochondrial adaptation to greater hepatic lipid turnover. FUNDING: Funding bodies that contributed to this study were listed in the acknowledgements section.


Asunto(s)
Diabetes Mellitus , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Masculino , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Hígado/metabolismo , Metabolismo Energético , Obesidad/etiología , Obesidad/metabolismo , Diabetes Mellitus/metabolismo , Dieta Alta en Grasa/efectos adversos
2.
Front Physiol ; 14: 1073407, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776968

RESUMEN

Purpose: The purpose of this study was to evaluate the effect of pre-exercise alkalosis, induced via ingestion of sodium bicarbonate, on changes to lactate/pH regulatory proteins and mitochondrial function induced by a sprint-interval exercise session in humans. Methods: On two occasions separated by 1 week, eight active men performed a 3 × 30-s all-out cycling test, interspersed with 20 min of recovery, following either placebo (PLA) or sodium bicarbonate (BIC) ingestion. Results: Blood bicarbonate and pH were elevated at all time points after ingestion in BIC vs PLA (p < 0.05). The protein content of monocarboxylate transporter 1 (MCT1) and basigin (CD147), at 6 h and 24 h post-exercise, and sodium/hydrogen exchanger 1 (NHE1) 24 h post-exercise, were significantly greater in BIC compared to PLA (p < 0.05), whereas monocarboxylate transporter 4 (MCT4), sodium/bicarbonate cotransporter (NBC), and carbonic anhydrase isoform II (CAII) content was unchanged. These increases in protein content in BIC vs. PLA after acute sprint-interval exercise may be associated with altered physiological responses to exercise, such as the higher blood pH and bicarbonate concentration values, and lower exercise-induced oxidative stress observed during recovery (p < 0.05). Additionally, mitochondrial respiration decreased after 24 h of recovery in the BIC condition only, with no changes in oxidative protein content in either condition. Conclusion: These data demonstrate that metabolic alkalosis induces post-exercise increases in several lactate/pH regulatory proteins, and reveal an unexpected role for acidosis in mitigating the loss of mitochondrial respiration caused by exercise in the short term.

3.
J Hepatol ; 77(6): 1504-1514, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35988689

RESUMEN

BACKGROUND & AIMS: Adipose tissue dysfunction is involved in the development of insulin resistance and is responsible for excessive lipid delivery to other organs such as the liver. We tested the hypothesis that impaired mitochondrial function is a common feature of subcutaneous (SAT) and visceral adipose tissue (VAT), but may differently contribute to adipose tissue insulin resistance (IR) in obesity, non-alcoholic fatty liver (NAFL) and steatohepatitis (NASH). METHODS: In this cross-sectional study, we analyzed tissue-specific insulin sensitivity using stable isotope dilution and hyperinsulinemic-normoglycemic clamp tests. We also assessed mitochondrial respiration, mRNA and protein expression, and tissue morphology in biopsies of SAT and VAT from obese humans without NAFL, with NAFL or with NASH (n = 22/group). RESULTS: Compared to individuals without liver disease, persons with NAFL and NASH had about 30% (p = 0.010) and 33% (p = 0.002) lower maximal mitochondrial respiration, respectively, in VAT, but not in SAT. The lower maximal mitochondrial respiration of VAT was associated with lower adipose tissue insulin sensitivity (ß = 0.985, p = 0.041) and with increased VAT protein expression of tumor necrosis factor A across all groups (ß = -0.085, p = 0.040). VAT from individuals with NASH was characterized by lower expression of oxidative phosphorylation complex IV (p = 0.042) and higher mRNA expression of the macrophage marker CD68 (p = 0.002) than VAT from participants without NAFL. CONCLUSIONS: Humans with non-alcoholic fatty liver disease have distinct abnormalities of VAT energy metabolism, which correlate with adipose tissue dysfunction and may favor progression of NAFL to NASH. LAY SUMMARY: Adipose tissue (commonly called body fat) can be found under the skin (subcutaneous) or around internal organs (visceral). Dysfunction of adipose tissue can cause insulin resistance and lead to excess delivery of fat to other organs such as the liver. Herein, we show that dysfunction specifically in visceral adipose tissue was associated with fatty liver disease. CLINICAL TRIAL NUMBER: NCT01477957.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Estudios Transversales , Obesidad/complicaciones , Respiración , Tejido Adiposo , Mitocondrias , ARN Mensajero
4.
Am J Physiol Cell Physiol ; 322(6): C1248-C1259, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35508191

RESUMEN

Common metabolic diseases such as obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease significantly contribute to morbidity and mortality worldwide. They are frequently associated with insulin resistance and altered mitochondrial functionality. Insulin-responsive tissues can show changes in mitochondrial features such as oxidative capacity, mitochondrial content, and turnover, which do not necessarily reflect abnormalities but rather adaptation to a certain metabolic condition. Lifestyle modifications and classic or novel drugs can modify these alterations and help to treat these metabolic diseases. This review addresses the role of mitochondria in human metabolic diseases and discusses potential future research directions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia
5.
Int J Mol Sci ; 23(5)2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35269762

RESUMEN

Autophagy is a key intracellular mechanism by which cells degrade old or dysfunctional proteins and organelles. In skeletal muscle, evidence suggests that exercise increases autophagosome content and autophagy flux. However, the exercise-induced response seems to differ between rodents and humans, and little is known about how different exercise prescription parameters may affect these results. The present study utilised skeletal muscle samples obtained from four different experimental studies using rats and humans. Here, we show that, following exercise, in the soleus muscle of Wistar rats, there is an increase in LC3B-I protein levels immediately after exercise (+109%), and a subsequent increase in LC3B-II protein levels 3 h into the recovery (+97%), despite no change in Map1lc3b mRNA levels. Conversely, in human skeletal muscle, there is an immediate exercise-induced decrease in LC3B-II protein levels (-24%), independent of whether exercise is performed below or above the maximal lactate steady state, which returns to baseline 3.5 h following recovery, while no change in LC3B-I protein levels or MAP1LC3B mRNA levels is observed. SQSTM1/p62 protein and mRNA levels did not change in either rats or humans following exercise. By employing an ex vivo autophagy flux assay previously used in rodents we demonstrate that the exercise-induced decrease in LC3B-II protein levels in humans does not reflect a decreased autophagy flux. Instead, effect size analyses suggest a modest-to-large increase in autophagy flux following exercise that lasts up to 24 h. Our findings suggest that exercise-induced changes in autophagosome content markers differ between rodents and humans, and that exercise-induced decreases in LC3B-II protein levels do not reflect autophagy flux level.


Asunto(s)
Autofagia , Condicionamiento Físico Animal , Animales , Autofagia/fisiología , Biomarcadores/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar
6.
Acta Physiol (Oxf) ; 234(2): e13772, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34985815

RESUMEN

AIM: Assessments of mitochondrial respiration and mitochondrial content are common in skeletal muscle research and exercise science. However, many sources of technical and biological variation render these analyses susceptible to error. This study aimed to better quantify the reliability of different experimental designs and/or techniques so as to assist researchers to obtain more reliable data. METHODS: We examined the repeatability of maximal mitochondrial oxidative phosphorylation in permeabilized muscle fibres via high-resolution respirometry, and citrate synthase activity (a biomarker for mitochondrial content) in a microplate with spectrophotometery. RESULTS: For mitochondrial respiration using permeabilized skeletal muscle fibres, the variability was reduced using three chambers and removing outliers compared to two chambers (CV reduced from 12.7% to 11.0%), and the minimal change that can be detected with 10 participants reduced from 17% to 13% according to modelling. For citrate synthase activity, the within-plate CV (3.5%) increased when the assay was repeated after 4 hours (CV = 10.2%) and 4 weeks (CV = 30.5%). The readings were correlated, but significantly different after 4 hours and 4 weeks. CONCLUSION: This research provides evidence for important technical considerations when measuring mitochondrial respiration and content using citrate synthase activity as a biomarker. When assessing mitochondrial respiration in human skeletal muscle, the technical variability of high-resolution respirometry can be reduced by increasing technical repeats and excluding outliers, practices which are not currently common. When analysing citrate synthase activity, our results highlight the importance of analysing all samples from the same study at the same time.


Asunto(s)
Mitocondrias Musculares , Músculo Esquelético , Biomarcadores/metabolismo , Humanos , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxígeno/fisiología , Reproducibilidad de los Resultados , Respiración
7.
Sports Med ; 52(6): 1329-1352, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35041180

RESUMEN

BACKGROUND: The maximal rate of oxygen consumption (VO2max) is an important measure in exercise science as it is an indicator of cardiorespiratory fitness. Individual studies have identified central and peripheral adaptions to interval training that may underlie improvements in VO2max, but there is no compilation of results. OBJECTIVE: We aimed to systematically review the adaptive responses to high-intensity interval training (HIIT) and sprint interval training (SIT) on the central and peripheral factors influencing VO2max in healthy individuals. DATA SOURCES: SPORTDiscus and MEDLINE (up to and including 13 June, 2020) were explored to conduct the literature search. STUDY SELECTION: Reviewed studies met the following criteria: (1) were in the English language; (2) prospective in nature; (3) included at least three interval sessions or were at least 1 week in duration; (4) contained HIIT or SIT; (5) involved participants between the ages of 18 and 65 years; and (6) included at least one of the following central (blood volume, plasma volume, hemoglobin mass, left ventricular mass, maximal stroke volume, maximal cardiac output) or peripheral factors (capillary density, maximal citrate synthase activity, mitochondrial respiration associated with VO2max). RESULTS: Thirty-two studies (369 participants, 49 were female) were included in the quantitative analyses, consisting of both HIIT (n = 18) and SIT (n = 17) interventions. There were only statistically significant changes in hematological measures (plasma volume) following HIIT. There was a significant increase in left ventricular mass following HIIT (7.4%, p < 0.001) and SIT (5.3%, p = 0.007) in inactive individuals, though the change following SIT may be misleading. There was only a significant increase in maximal stroke volume (14.1%, p = 0.015) and maximal cardiac output (12.6%, p = 0.002) following HIIT. In addition to central factors, there was a significant increase in capillary density (13.8%, p < 0.001) following SIT in active individuals. With respect to maximal citrate synthase activity, there were improvements following HIIT (20.8%, p < 0.001) and SIT (15.7%, p < 0.001, I2 = 97%) in active individuals. The results for mitochondrial respiration suggested that there was no statistically significant improvement following HIIT (5.0%, p = 0.585). CONCLUSIONS: Improvements in the central and peripheral factors influencing VO2max were dependent on the interval type. Only HIIT led to a statistically significant improvement in cardiac function. Both HIIT and SIT increased maximal citrate synthase activity, while changes in other peripheral measures (capillary density, mitochondrial respiration) only occurred with SIT.


Asunto(s)
Capacidad Cardiovascular , Entrenamiento de Intervalos de Alta Intensidad , Adolescente , Adulto , Anciano , Citrato (si)-Sintasa , Femenino , Entrenamiento de Intervalos de Alta Intensidad/métodos , Humanos , Masculino , Persona de Mediana Edad , Consumo de Oxígeno/fisiología , Estudios Prospectivos , Adulto Joven
8.
Nat Commun ; 12(1): 7056, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862379

RESUMEN

Mitochondrial defects are implicated in multiple diseases and aging. Exercise training is an accessible, inexpensive therapeutic intervention that can improve mitochondrial bioenergetics and quality of life. By combining multiple omics techniques with biochemical and in silico normalisation, we removed the bias arising from the training-induced increase in mitochondrial content to unearth an intricate and previously undemonstrated network of differentially prioritised mitochondrial adaptations. We show that changes in hundreds of transcripts, proteins, and lipids are not stoichiometrically linked to the overall increase in mitochondrial content. Our findings suggest enhancing electron flow to oxidative phosphorylation (OXPHOS) is more important to improve ATP generation than increasing the abundance of the OXPHOS machinery, and do not support the hypothesis that training-induced supercomplex formation enhances mitochondrial bioenergetics. Our study provides an analytical approach allowing unbiased and in-depth investigations of training-induced mitochondrial adaptations, challenging our current understanding, and calling for careful reinterpretation of previous findings.


Asunto(s)
Adaptación Fisiológica , Metabolismo Energético/fisiología , Entrenamiento de Intervalos de Alta Intensidad , Mitocondrias/metabolismo , Músculo Esquelético/fisiología , Adenosina Trifosfato/biosíntesis , Adolescente , Adulto , Biopsia , Transporte de Electrón/fisiología , Voluntarios Sanos , Humanos , Masculino , Músculo Esquelético/citología , Fosforilación Oxidativa , Proteoma , Calidad de Vida , Adulto Joven
9.
Front Physiol ; 12: 672252, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539423

RESUMEN

People affected by diabetes are at an increased risk of developing heart failure than their non-diabetic counterparts, attributed in part to a distinct cardiac pathology termed diabetic cardiomyopathy. Mitochondrial dysfunction and excess reactive oxygen species (ROS) have been implicated in a range of diabetic complications and are a common feature of the diabetic heart. In this study, we sought to characterise impairments in mitochondrial structure and function in a recently described experimental mouse model of diabetic cardiomyopathy. Diabetes was induced in 6-week-old male FVB/N mice by the combination of three consecutive-daily injections of low-dose streptozotocin (STZ, each 55 mg/kg i.p.) and high-fat diet (42% fat from lipids) for 26 weeks. At study end, diabetic mice exhibited elevated blood glucose levels and impaired glucose tolerance, together with increases in both body weight gain and fat mass, replicating several aspects of human type 2 diabetes. The myocardial phenotype of diabetic mice included increased myocardial fibrosis and left ventricular (LV) diastolic dysfunction. Elevated LV superoxide levels were also evident. Diabetic mice exhibited a spectrum of LV mitochondrial changes, including decreased mitochondria area, increased levels of mitochondrial complex-III and complex-V protein abundance, and reduced complex-II oxygen consumption. In conclusion, these data suggest that the low-dose STZ-high fat experimental model replicates some of the mitochondrial changes seen in diabetes, and as such, this model may be useful to study treatments that target the mitochondria in diabetes.

10.
Eur J Appl Physiol ; 121(8): 2323-2336, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33988746

RESUMEN

PURPOSE: To investigate within the one study potential molecular and cellular changes associated with mitochondrial biogenesis following 15 days of exposure to moderate hypoxia. METHODS: Eight males underwent a muscle biopsy before and after 15 days of hypoxia exposure (FiO2 = 0.140-0.154; ~ 2500-3200 m) in a hypoxic hotel. Mitochondrial respiration, citrate synthase (CS) activity, and the content of genes and proteins associated with mitochondrial biogenesis were investigated. RESULTS: Our main findings were the absence of significant changes in the mean values of CS activity, mitochondrial respiration in permeabilised fibers, or the content of genes and proteins associated with mitochondrial biogenesis, after 15 days of moderate normobaric hypoxia. CONCLUSION: Our data provide evidence that 15 days of moderate normobaric hypoxia have negligible influence on skeletal muscle mitochondrial content and function, or genes and proteins content associated with mitochondrial biogenesis, in young recreationally active males. However, the increase in mitochondrial protease LON content after hypoxia exposure suggests the possibility of adaptations to optimise respiratory chain function under conditions of reduced O2 availability.


Asunto(s)
Hipoxia/fisiopatología , Mitocondrias Musculares/metabolismo , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Biogénesis de Organelos , ARN Mensajero , Biopsia , Citrato (si)-Sintasa/metabolismo , Prueba de Esfuerzo , Humanos , Masculino , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Adulto Joven
11.
Nutrients ; 13(5)2021 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-33922959

RESUMEN

Diabetic kidney disease (DKD) remains the number one cause of end-stage renal disease in the western world. In experimental diabetes, mitochondrial dysfunction in the kidney precedes the development of DKD. Reactive 1,2-dicarbonyl compounds, such as methylglyoxal, are generated from sugars both endogenously during diabetes and exogenously during food processing. Methylglyoxal is thought to impair the mitochondrial function and may contribute to the pathogenesis of DKD. Here, we sought to target methylglyoxal within the mitochondria using MitoGamide, a mitochondria-targeted dicarbonyl scavenger, in an experimental model of diabetes. Male 6-week-old heterozygous Akita mice (C57BL/6-Ins2-Akita/J) or wildtype littermates were randomized to receive MitoGamide (10 mg/kg/day) or a vehicle by oral gavage for 16 weeks. MitoGamide did not alter the blood glucose control or body composition. Akita mice exhibited hallmarks of DKD including albuminuria, hyperfiltration, glomerulosclerosis, and renal fibrosis, however, after 16 weeks of treatment, MitoGamide did not substantially improve the renal phenotype. Complex-I-linked mitochondrial respiration was increased in the kidney of Akita mice which was unaffected by MitoGamide. Exploratory studies using transcriptomics identified that MitoGamide induced changes to olfactory signaling, immune system, respiratory electron transport, and post-translational protein modification pathways. These findings indicate that targeting methylglyoxal within the mitochondria using MitoGamide is not a valid therapeutic approach for DKD and that other mitochondrial targets or processes upstream should be the focus of therapy.


Asunto(s)
Benzamidas/uso terapéutico , Complicaciones de la Diabetes/prevención & control , Diabetes Mellitus Experimental/complicaciones , Enfermedades Renales/prevención & control , Mitocondrias/efectos de los fármacos , Piruvaldehído/metabolismo , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL
12.
Nephrol Dial Transplant ; 36(6): 988-997, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33367789

RESUMEN

BACKGROUND: The nicotinamide adenine dinucleotide phosphate oxidase isoform 4 (Nox4) mediates reactive oxygen species (ROS) production and renal fibrosis in diabetic kidney disease (DKD) at the level of the podocyte. However, the mitochondrial localization of Nox4 and its role as a mitochondrial bioenergetic sensor has recently been reported. Whether Nox4 drives pathology in DKD within the proximal tubular compartment, which is densely packed with mitochondria, is not yet known. METHODS: We generated a proximal tubular-specific Nox4 knockout mouse model by breeding Nox4flox/flox mice with mice expressing Cre recombinase under the control of the sodium-glucose cotransporter-2 promoter. Subsets of Nox4ptKO mice and their Nox4flox/flox littermates were injected with streptozotocin (STZ) to induce diabetes. Mice were followed for 20 weeks and renal injury was assessed. RESULTS: Genetic ablation of proximal tubular Nox4 (Nox4ptKO) resulted in no change in renal function and histology. Nox4ptKO mice and Nox4flox/flox littermates injected with STZ exhibited the hallmarks of DKD, including hyperfiltration, albuminuria, renal fibrosis and glomerulosclerosis. Surprisingly, diabetes-induced renal injury was not improved in Nox4ptKO STZ mice compared with Nox4flox/flox STZ mice. Although diabetes conferred ROS overproduction and increased the mitochondrial oxygen consumption rate, proximal tubular deletion of Nox4 did not normalize oxidative stress or mitochondrial bioenergetics. CONCLUSIONS: Taken together, these results demonstrate that genetic deletion of Nox4 from the proximal tubules does not influence DKD development, indicating that Nox4 localization within this highly energetic compartment is dispensable for chronic kidney disease pathogenesis in the setting of diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Animales , Nefropatías Diabéticas/genética , Riñón , Túbulos Renales , Túbulos Renales Proximales , Ratones , NADP , NADPH Oxidasa 4/genética , NADPH Oxidasas/genética , Especies Reactivas de Oxígeno
13.
Sports Med ; 50(10): 1729-1756, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32729096

RESUMEN

Prescribing the frequency, duration, or volume of training is simple as these factors can be altered by manipulating the number of exercise sessions per week, the duration of each session, or the total work performed in a given time frame (e.g., per week). However, prescribing exercise intensity is complex and controversy exists regarding the reliability and validity of the methods used to determine and prescribe intensity. This controversy arises from the absence of an agreed framework for assessing the construct validity of different methods used to determine exercise intensity. In this review, we have evaluated the construct validity of different methods for prescribing exercise intensity based on their ability to provoke homeostatic disturbances (e.g., changes in oxygen uptake kinetics and blood lactate) consistent with the moderate, heavy, and severe domains of exercise. Methods for prescribing exercise intensity include a percentage of anchor measurements, such as maximal oxygen uptake ([Formula: see text]), peak oxygen uptake ([Formula: see text]), maximum heart rate (HRmax), and maximum work rate (i.e., power or velocity-[Formula: see text] or [Formula: see text], respectively), derived from a graded exercise test (GXT). However, despite their common use, it is apparent that prescribing exercise intensity based on a fixed percentage of these maximal anchors has little merit for eliciting distinct or domain-specific homeostatic perturbations. Some have advocated using submaximal anchors, including the ventilatory threshold (VT), the gas exchange threshold (GET), the respiratory compensation point (RCP), the first and second lactate threshold (LT1 and LT2), the maximal lactate steady state (MLSS), critical power (CP), and critical speed (CS). There is some evidence to support the validity of LT1, GET, and VT to delineate the moderate and heavy domains of exercise. However, there is little evidence to support the validity of most commonly used methods, with exception of CP and CS, to delineate the heavy and severe domains of exercise. As acute responses to exercise are not always predictive of chronic adaptations, training studies are required to verify whether different methods to prescribe exercise will affect adaptations to training. Better ways to prescribe exercise intensity should help sport scientists, researchers, clinicians, and coaches to design more effective training programs to achieve greater improvements in health and athletic performance.


Asunto(s)
Umbral Anaerobio/fisiología , Rendimiento Atlético/fisiología , Ejercicio Físico/fisiología , Frecuencia Cardíaca/fisiología , Ácido Láctico/metabolismo , Consumo de Oxígeno/fisiología , Prueba de Esfuerzo , Humanos , Reproducibilidad de los Resultados
14.
Clin Sci (Lond) ; 134(2): 239-259, 2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-31943002

RESUMEN

Mitochondrial stress has been widely observed in diabetic kidney disease (DKD). Cyclophilin D (CypD) is a functional component of the mitochondrial permeability transition pore (mPTP) which allows the exchange of ions and solutes between the mitochondrial matrix to induce mitochondrial swelling and activation of cell death pathways. CypD has been successfully targeted in other disease contexts to improve mitochondrial function and reduced pathology. Two approaches were used to elucidate the role of CypD and the mPTP in DKD. Firstly, mice with a deletion of the gene encoding CypD (Ppif-/-) were rendered diabetic with streptozotocin (STZ) and followed for 24 weeks. Secondly, Alisporivir, a CypD inhibitor was administered to the db/db mouse model (5 mg/kg/day oral gavage for 16 weeks). Ppif-/- mice were not protected against diabetes-induced albuminuria and had greater glomerulosclerosis than their WT diabetic littermates. Renal hyperfiltration was lower in diabetic Ppif-/- as compared with WT mice. Similarly, Alisporivir did not improve renal function nor pathology in db/db mice as assessed by no change in albuminuria, KIM-1 excretion and glomerulosclerosis. Db/db mice exhibited changes in mitochondrial function, including elevated respiratory control ratio (RCR), reduced mitochondrial H2O2 generation and increased proximal tubular mitochondrial volume, but these were unaffected by Alisporivir treatment. Taken together, these studies indicate that CypD has a complex role in DKD and direct targeting of this component of the mPTP will likely not improve renal outcomes.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Enfermedades Renales/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Peptidil-Prolil Isomerasa F/metabolismo , Albuminuria/genética , Albuminuria/metabolismo , Animales , Peptidil-Prolil Isomerasa F/antagonistas & inhibidores , Peptidil-Prolil Isomerasa F/genética , Ciclosporina/farmacología , Diabetes Mellitus Experimental/genética , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Peróxido de Hidrógeno/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Poro de Transición de la Permeabilidad Mitocondrial , ATPasas de Translocación de Protón/metabolismo
15.
Am J Physiol Endocrinol Metab ; 318(2): E224-E236, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31794264

RESUMEN

Exercise-induced increases in peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and p53 protein content in the nucleus mediate the initial phase of exercise-induced mitochondrial biogenesis. Here, we investigated whether exercise-induced increases in these and other markers of mitochondrial biogenesis were altered after 40 sessions of twice-daily high-volume, high-intensity interval training (HVT) in human skeletal muscle. Vastus lateralis muscle biopsies were collected from 10 healthy recreationally active participants before, immediately postexercise, and 3 h after a session of high-intensity interval exercise (HIIE) performed at the same absolute exercise intensity before and after HVT (pre-HVT and post-HVT, respectively). The protein content of common markers of exercise-induced mitochondrial biogenesis was assessed in nuclear- and cytosolic-enriched fractions by immunoblotting; mRNA contents of key transcription factors and mitochondrial genes were assessed by qPCR. Despite exercise-induced increases in PGC-1α, p53, and plant homeodomain finger-containing protein 20 (PHF20) protein content, the phosphorylation of p53 and acetyl-CoA carboxylase (p-p53 Ser15 and p-ACC Ser79, respectively), and PGC-1α mRNA Pre-HVT, no significant changes were observed post-HVT. Forty sessions of twice-daily high-intensity interval training blunted all of the measured exercise-induced molecular events associated with mitochondrial biogenesis that were observed pre-HVT. Future studies should determine whether this loss relates to the decrease in relative exercise intensity, habituation to the same exercise stimulus, or a combination of both.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Ejercicio Físico/fisiología , Entrenamiento de Intervalos de Alta Intensidad , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Citosol/metabolismo , Prueba de Esfuerzo , Expresión Génica/genética , Humanos , Masculino , Mitocondrias Musculares/genética , Mitocondrias Musculares/metabolismo , Biogénesis de Organelos , ARN Mensajero/biosíntesis , Adulto Joven
18.
Physiology (Bethesda) ; 34(1): 56-70, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30540234

RESUMEN

It is well established that different types of exercise can provide a powerful stimulus for mitochondrial biogenesis. However, there are conflicting findings in the literature, and a consensus has not been reached regarding the efficacy of high-intensity exercise to promote mitochondrial biogenesis in humans. The purpose of this review is to examine current controversies in the field and to highlight some important methodological issues that need to be addressed to resolve existing conflicts.


Asunto(s)
Ejercicio Físico/fisiología , Mitocondrias/fisiología , Condicionamiento Físico Animal/fisiología , Animales , Humanos , Biogénesis de Organelos , Investigación
19.
J Sport Health Sci ; 7(2): 191-196, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30356443

RESUMEN

BACKGROUND: Exercise promotes numerous phenotypic adaptations in skeletal muscle that contribute to improved function and metabolic capacity. An emerging body of evidence suggests that skeletal muscle also releases a myriad of factors during exercise, termed "myokines". The purpose of this study was to examine the effects of high-intensity interval training (HIIT) on the acute regulation of the mRNA expression of several myokines, including the prototypical myokine interleukin-6 (IL-6), and recently identified myokines fibronectin type III domain-containing protein 5 (FNDC5) (irisin) and meteorin-like protein (METRNL). METHODS: Both before and after a 20-day period of twice-daily high-volume HIIT, 9 healthy males (20.5 ± 1.5 years performed a standardized bout of high-intensity interval exercise (HIIE; 5 × 4 min at ~80% pretraining peak power output) with skeletal muscle biopsy samples (vastus lateralis) obtained at rest, immediately following exercise, and at 3 h recovery. RESULTS: Before training, a single bout of HIIE increased IL-6 (p < 0.05) and METRNL (p < 0.05) mRNA expression measured at 3 h recovery when compared to rest. Following 20 days of HIIT, IL-6 and FNDC5 mRNA were increased at 3 h recovery from the standardized HIIE bout when compared to rest (both p < 0.05). Resting METRNL and FNDC5 mRNA expression were higher following training (p < 0.05), and there was an overall increase in FNDC5 mRNA post-training (main effect of training, p < 0.05). CONCLUSION: In human skeletal muscle (1) an acute bout of HIIE can induce upregulation of skeletal muscle IL-6 mRNA both before and after a period of intensified HIIT; (2) Resting and overall FNDC5 mRNA expression is increased by 20 days of HIIT; and (3) METRNL mRNA expression is responsive to both acute HIIE and short-term intense HIIT. Future studies are needed to confirm these findings at the protein and secretion level in humans.

20.
Sports Med ; 48(8): 1809-1828, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29934848

RESUMEN

A sedentary lifestyle has been linked to a number of metabolic disorders that have been associated with sub-optimal mitochondrial characteristics and an increased risk of premature death. Endurance training can induce an increase in mitochondrial content and/or mitochondrial functional qualities, which are associated with improved health and well-being and longer life expectancy. It is therefore important to better define how manipulating key parameters of an endurance training intervention can influence the content and functionality of the mitochondrial pool. This review focuses on mitochondrial changes taking place following a series of exercise sessions (training-induced mitochondrial adaptations), providing an in-depth analysis of the effects of exercise intensity and training volume on changes in mitochondrial protein synthesis, mitochondrial content and mitochondrial respiratory function. We provide evidence that manipulation of different exercise training variables promotes specific and diverse mitochondrial adaptations. Specifically, we report that training volume may be a critical factor affecting changes in mitochondrial content, whereas relative exercise intensity is an important determinant of changes in mitochondrial respiratory function. As a consequence, a dissociation between training-induced changes in mitochondrial content and mitochondrial respiratory function is often observed. We also provide evidence that exercise-induced changes are not necessarily predictive of training-induced adaptations, we propose possible explanations for the above discrepancies and suggestions for future research.


Asunto(s)
Respiración de la Célula/fisiología , Ejercicio Físico/fisiología , Mitocondrias Musculares/fisiología , Músculo Esquelético/fisiología , Consumo de Oxígeno/fisiología , Adaptación Fisiológica , Prueba de Esfuerzo , Humanos , Acondicionamiento Físico Humano/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...