Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
NPJ Precis Oncol ; 7(1): 45, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37202426

RESUMEN

Low-grade serous ovarian cancer (LGSOC) typically responds poorly to standard platinum-based chemotherapy and new therapeutic approaches are needed. We describe a remarkable response to targeted therapy in a patient with platinum-resistant, advanced LGSOC who had failed standard-of-care chemotherapy and two surgeries. The patient was in rapid decline and entering hospice care on home intravenous (i.v.) opioid analgesics and a malignant bowel obstruction requiring a G-tube. Genomic analysis of the patient's tumor did not indicate obvious therapeutic options. In contrast, a CLIA-certified drug sensitivity assay of an organoid culture derived from the patient's tumor identified several therapeutic choices, including Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, as well as the EGFR inhibitors afatinib and erlotinib. Following off-label administration of daily ibrutinib as monotherapy, the patient had an exceptional clinical turnaround over the following 65 weeks with normalization of CA-125 levels, resolution of the malignant bowel obstruction, halting of pain medications, and improvement of performance status from ECOG 3 to ECOG 1. After 65 weeks of stable disease, the patient's CA-125 levels began to rise, at which point the patient discontinued ibrutinib and began taking afatinib as monotherapy. The patient's CA-125 levels remained stable for an additional 38 weeks but due to anemia and rising CA-125 levels, the patient switched to erlotinib and is currently being monitored. This case highlights the clinical utility of ex vivo drug testing of patient-derived tumor organoids as a new functional precision medicine approach to identify effective personalized therapies for patients who have failed standard-of-care treatments.

4.
Front Oncol ; 13: 1267650, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239650

RESUMEN

Patients presenting with stage 4 ovarian carcinoma, including low-grade serous disease, have a poor prognosis. Although platinum-based therapies can offer some response, these therapies are associated with many side effects, and treatment resistance often develops. Toxic side effects along with disease progression render patients unable to receive additional lines of treatment and limit their options to hospice or palliative care. In this case report, we describe a patient with an unusual case of metastatic low-grade serous ovarian cancer with some features of high-grade disease who had received four previous lines of treatment and was suffering from atelectasis, pulmonary embolism, and hydronephrosis. A CLIA-certified drug sensitivity assay of an organoid culture derived from the patient's tumor (PARIS® test) identified several therapeutic options, including the combination of fulvestrant with everolimus. On this treatment regimen, the patient experienced 7 months of stable disease and survived nearly 11 months before succumbing to her disease. This case emphasizes the clinical utility of ex vivo drug testing as a new functional precision medicine approach to identify, in real-time, personalized treatment options for patients, especially those who are not benefiting from standard of care treatments.

5.
Cancer Res ; 82(18): 3375-3393, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35819261

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) typically presents as metastatic disease at diagnosis and remains refractory to treatment. Next-generation sequencing efforts have described the genomic landscape, classified molecular subtypes, and confirmed frequent alterations in major driver genes, with coexistent alterations in KRAS and TP53 correlating with the highest metastatic burden and poorest outcomes. However, translating this information to guide therapy remains a challenge. By integrating genomic analysis with an arrayed RNAi druggable genome screen and drug profiling of a KRAS/TP53 mutant PDAC cell line derived from a patient-derived xenograft (PDCL), we identified numerous targetable vulnerabilities that reveal both known and novel functional aspects of pancreatic cancer biology. A dependence on the general transcription and DNA repair factor TFIIH complex, particularly the XPB subunit and the CAK complex (CDK7/CyclinH/MAT1), was identified and further validated utilizing a panel of genomically subtyped KRAS mutant PDCLs. TFIIH function was inhibited with a covalent inhibitor of CDK7/12/13 (THZ1), a CDK7/CDK9 kinase inhibitor (SNS-032), and a covalent inhibitor of XPB (triptolide), which led to disruption of the protein stability of the RNA polymerase II subunit RPB1. Loss of RPB1 following TFIIH inhibition led to downregulation of key transcriptional effectors of KRAS-mutant signaling and negative regulators of apoptosis, including MCL1, XIAP, and CFLAR, initiating caspase-8 dependent apoptosis. All three drugs exhibited synergy in combination with a multivalent TRAIL, effectively reinforcing mitochondrial-mediated apoptosis. These findings present a novel combination therapy, with direct translational implications for current clinical trials on metastatic pancreatic cancer patients. Significance: This study utilizes functional genetic and pharmacological profiling of KRAS-mutant pancreatic adenocarcinoma to identify therapeutic strategies and finds that TFIIH inhibition synergizes with TRAIL to induce apoptosis in KRAS-driven pancreatic cancer.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Quinasas Ciclina-Dependientes/genética , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Pancreáticas
6.
Oncogene ; 41(24): 3355-3369, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35538224

RESUMEN

The oncogene Ras and the tumor suppressor gene p53 are frequently co-mutated in human cancer and mutations in Ras and p53 can cooperate to generate a more malignant cell state. To discover novel druggable targets for cancers carrying co-mutations in Ras and p53, we performed arrayed, kinome focused siRNA and oncology drug phenotypic screening utilizing a set of syngeneic Ras mutant squamous cell carcinoma (SCC) cell lines that also carried co-mutations in selected p53 pathway genes. These cell lines were derived from SCCs from carcinogen-treated inbred mice which harbored germline deletions or mutations in Trp53, p19Arf, Atm, or Prkdc. Both siRNA and drug phenotypic screening converge to implicate the phosphoinositol kinases, receptor tyrosine kinases, MAP kinases, as well as cell cycle and DNA damage response genes as targetable dependencies in SCC. Differences in functional kinome profiles between Ras mutant cell lines reflect incomplete penetrance of Ras synthetic lethal kinases and indicate that co-mutations cause a rewiring of survival pathways in Ras mutant tumors. This study describes the functional kinomic landscape of Ras/p53 mutant chemically-induced squamous cell carcinoma in both the baseline unperturbed state and following DNA damage and nominates candidate therapeutic targets, including the Nek4 kinase, for further development.


Asunto(s)
Carcinoma de Células Escamosas , Proteína p53 Supresora de Tumor , Proteínas ras , Animales , Carcinoma de Células Escamosas/enzimología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Humanos , Ratones , Mutación , ARN Interferente Pequeño , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas ras/genética
7.
J Exp Med ; 219(6)2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35510953

RESUMEN

Genetic alterations in RET lead to activation of ERK and AKT signaling and are associated with hereditary and sporadic thyroid cancer and lung cancer. Highly selective RET inhibitors have recently entered clinical use after demonstrating efficacy in treating patients with diverse tumor types harboring RET gene rearrangements or activating mutations. In order to understand resistance mechanisms arising after treatment with RET inhibitors, we performed a comprehensive molecular and genomic analysis of a patient with RET-rearranged thyroid cancer. Using a combination of drug screening and proteomic and biochemical profiling, we identified an adaptive resistance to RET inhibitors that reactivates ERK signaling within hours of drug exposure. We found that activation of FGFR signaling is a mechanism of adaptive resistance to RET inhibitors that activates ERK signaling. Combined inhibition of FGFR and RET prevented the development of adaptive resistance to RET inhibitors, reduced cell viability, and decreased tumor growth in cellular and animal models of CCDC6-RET-rearranged thyroid cancer.


Asunto(s)
Neoplasias Pulmonares , Neoplasias de la Tiroides , Animales , Proteínas del Citoesqueleto/genética , Humanos , Neoplasias Pulmonares/patología , Proteómica , Proteínas Proto-Oncogénicas c-ret/genética , Receptores de Factores de Crecimiento de Fibroblastos , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/genética
8.
Mol Cancer Res ; 20(2): 244-252, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728552

RESUMEN

In this era of precision medicine, numerous workflows for the targeting of high-recurrent mutations in common tumor types have been developed, leaving patients with rare diseases with few options. Here, we implement a functional precision oncology approach utilizing comprehensive genomic profiling in combination with high-throughput drug screening, to identify tumor-specific drug sensitivities for patients with rare tumor types such as myxofibrosarcoma. From a patient with a high-grade myxofibrosarcoma, who was enrolled in the Englander Institute for Precision Medicine (EIPM) program, we established patient-derived 3D sarco-spheres and xenograft models for functional testing. In the absence of a large cohort of clinically similar cases, high-throughput drug screening was performed on the patient-derived cells, and compared with two other myxofibrosarcoma lines and a benign fibroblast line to functionally identify tumor-specific drug sensitivities. The addition of functional drug sensitivity testing to complement genomic profiling identified multiple therapeutic options that were further validated in patient derived xenograft models. Genomic analyses detected the frequently known codeletion of the tumor suppressors CDKN2A/B together with the methylthioadenosine phosphorylase (MTAP) and a TP53 E286fs*50 mutation. High-throughput drug screening demonstrated tumor-specific sensitivity to compounds targeting the cell cycle. Based on genomic analysis and high-throughput drug screening, we show that targeting the cell cycle in these tumors is a powerful approach. IMPLICATIONS: This study demonstrates the potential of functional testing to aid clinical decision making for patients with rare or molecularly complex malignancies when combined with comprehensive genomic profiling.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Fibrosarcoma/fisiopatología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Oncología Médica/métodos , Terapia Molecular Dirigida/métodos , Medicina de Precisión/métodos , Animales , Femenino , Humanos , Ratones , Ratones Desnudos , Mutación
9.
Mol Cancer Ther ; 20(4): 691-703, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33509905

RESUMEN

Ovarian clear cell carcinoma (OCCC) is a rare, chemo-resistant subtype of ovarian cancer. To identify novel therapeutic targets and combination therapies for OCCC, we subjected a set of patient-derived ovarian cancer cell lines to arrayed high-throughput siRNA and drug screening. The results indicated OCCC cells are vulnerable to knockdown of epigenetic gene targets such as bromodomain and extra-terminal domain (BET) proteins BRD2 and BRD3. Subsequent RNA interference assays, as well as BET inhibitor treatments, validated these BET proteins as potential therapeutic targets. Because development of resistance to single targeted agents is common, we next performed sensitizer drug screens to identify potential combination therapies with the BET inhibitor CPI0610. Several PI3K or AKT inhibitors were among the top drug combinations identified and subsequent work showed CPI0610 synergized with alpelisib or MK2206 by inducing p53-independent apoptosis. We further verified synergy between CPI0610 and PI3K-AKT pathway inhibitors alpelisib, MK2206, or ipatasertib in tumor organoids obtained directly from patients with OCCC. These findings indicate further preclinical evaluation of BET inhibitors, alone or in combination with PI3K-AKT inhibitors for OCCC, is warranted.


Asunto(s)
Adenocarcinoma de Células Claras/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción/metabolismo , Adenocarcinoma de Células Claras/patología , Femenino , Humanos , Neoplasias Ováricas/patología , Transfección
10.
EBioMedicine ; 60: 102988, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32927276

RESUMEN

BACKGROUND: Homologous recombination deficiencies (HRD) are present in approximately half of epithelial ovarian cancers, for which PARP inhibitors (PARPi) are becoming a preferred treatment option. However, a considerable proportion of these carcinomas acquire resistance or harbour de novo resistance, posing a significant challenge to treatment. METHODS: To identify new combinatorial therapeutics to overcome resistance to PARPi, we employed high-throughput conditional RNAi and drug screening of patient-derived ovarian cancer cells. To prioritise clinically relevant drug combinations, we integrated empirical validation with analysis of The Cancer Genome Atlas (TCGA) and Genomics of Drug Sensitivity in Cancer (GDSC) datasets to nominate candidate targets and drugs, reaching three main findings. FINDINGS: Firstly, we found that the PARPi rucaparib enhanced the effect of BET inhibitors (CPI-203 & CPI-0610) irrespective of clinical subtype or HRD status. Additional drug combination screens identified that dasatinib, a non-receptor tyrosine kinase inhibitor, augmented the effects of rucaparib and BET inhibitors, proposing a potential broadly applicable triple-drug combination for high-grade serous and clear cell ovarian carcinomas. Secondly, rucaparib synergised with the BCL2 family inhibitor navitoclax, with preferential activity in ovarian carcinomas that harbour alterations in BRCA1/2, BARD1, or MSH2/6. Thirdly, we identified potentially antagonistic drug combinations between the PARPi rucaparib and vinca alkaloids, anthracyclines, and antimetabolites, cautioning their use in the clinic. INTERPRETATION: These findings propose therapeutic strategies to address PARP inhibitor resistance using agents that are already approved or are in clinical development, with the potential for rapid translation to benefit a broad population of ovarian cancer patients.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Proteínas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Transcriptoma , Ensayos Antitumor por Modelo de Xenoinjerto , Familia-src Quinasas/antagonistas & inhibidores
11.
Clin Cancer Res ; 26(14): 3662-3670, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32376656

RESUMEN

PURPOSE: Patients with colorectal cancer with peritoneal metastases (CRPMs) have limited treatment options and the lowest colorectal cancer survival rates. We aimed to determine whether organoid testing could help guide precision treatment for patients with CRPMs, as the clinical utility of prospective, functional drug screening including nonstandard agents is unknown. EXPERIMENTAL DESIGN: CRPM organoids (peritonoids) isolated from patients underwent parallel next-generation sequencing and medium-throughput drug panel testing ex vivo to identify specific drug sensitivities for each patient. We measured the utility of such a service including: success of peritonoid generation, time to cultivate peritonoids, reproducibility of the medium-throughput drug testing, and documented changes to clinical therapy as a result of the testing. RESULTS: Peritonoids were successfully generated and validated from 68% (19/28) of patients undergoing standard care. Genomic and drug profiling was completed within 8 weeks and a formal report ranking drug sensitivities was provided to the medical oncology team upon failure of standard care treatment. This resulted in a treatment change for two patients, one of whom had a partial response despite previously progressing on multiple rounds of standard care chemotherapy. The barrier to implementing this technology in Australia is the need for drug access and funding for off-label indications. CONCLUSIONS: Our approach is feasible, reproducible, and can guide novel therapeutic choices in this poor prognosis cohort, where new treatment options are urgently needed. This platform is relevant to many solid organ malignancies.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Organoides/efectos de los fármacos , Neoplasias Peritoneales/tratamiento farmacológico , Medicina de Precisión/métodos , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos/uso terapéutico , Australia , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Estudios de Factibilidad , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/secundario , Peritoneo/citología , Peritoneo/patología , Cultivo Primario de Células/métodos , Estudios Prospectivos , Reproducibilidad de los Resultados
12.
Proc Natl Acad Sci U S A ; 116(34): 16981-16986, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31383760

RESUMEN

To repurpose compounds for diffuse large B cell lymphoma (DLBCL), we screened a library of drugs and other targeted compounds approved by the US Food and Drug Administration on 9 cell lines and validated the results on a panel of 32 genetically characterized DLBCL cell lines. Dasatinib, a multikinase inhibitor, was effective against 50% of DLBCL cell lines, as well as against in vivo xenografts. Dasatinib was more broadly active than the Bruton kinase inhibitor ibrutinib and overcame ibrutinib resistance. Tumors exhibiting dasatinib resistance were commonly characterized by activation of the PI3K pathway and loss of PTEN expression as a specific biomarker. PI3K suppression by mTORC2 inhibition synergized with dasatinib and abolished resistance in vitro and in vivo. These results provide a proof of concept for the repurposing approach in DLBCL, and point to dasatinib as an attractive strategy for further clinical development in lymphomas.


Asunto(s)
Dasatinib/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Linfoma de Células B Grandes Difuso , Adenina/análogos & derivados , Animales , Línea Celular Tumoral , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Piperidinas , Prueba de Estudio Conceptual , Pirazoles/farmacología , Pirimidinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Sci Rep ; 8(1): 13207, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30181600

RESUMEN

Platinum resistance is one of the most challenging problems in ovarian cancer treatment. High-throughput functional siRNA screening identified tyrosine kinase with immunoglobulin-like and EGF-like domains 1 (TIE-1) as a gene that confers cells resistant to cisplatin. Conversely enforced over-expression of TIE-1 was validated to decrease cisplatin sensitivity in multiple ovarian cancer cell lines and up-regulation of TIE-1 was correlated with poor prognosis and cisplatin resistance in patients with ovarian cancer. Mechanistically, TIE-1 up-regulates the nucleotide excision repair (NER) system mediated by xeroderma pigmentosum complementation group C (XPC), thereby leading to decreased susceptibility to cisplatin-induced cell death without affecting cisplatin uptake and excretion. Importantly potentiation of therapeutic efficacy by TIE-1 inhibition was selective to DNA-adduct-type chemotherapeutic platinum reagents. Therefore, TIE-1 is suggested to promote XPC-dependent NER, rendering ovarian cancer cells resistant to platinum. Accompanied with novel findings, TIE-1 could represent as a novel therapeutic target for platinum-resistant ovarian cancer.


Asunto(s)
Antineoplásicos/uso terapéutico , Cisplatino/uso terapéutico , Reparación del ADN/efectos de los fármacos , Resistencia a Antineoplásicos , Neoplasias Ováricas/tratamiento farmacológico , Receptor TIE-1/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Cisplatino/farmacología , Femenino , Humanos , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo
14.
Trends Cancer ; 4(9): 634-642, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30149881

RESUMEN

Although cancer research is progressing at an exponential rate, translating this knowledge to develop better cancer drugs and more effectively match drugs to patients is lagging. Genome profiling of tumors provides a snapshot of the genetic complexity of individual tumors, yet this knowledge is insufficient to guide therapy for most patients. Model systems, usually cancer cell lines or mice, have been instrumental in cancer research and drug development, but translation of results to the clinic is inefficient, in part, because these models do not sufficiently reflect the complexity and heterogeneity of human cancer. Here, we discuss the potential of combining genomics with high-throughput functional testing of patient-derived tumor cells to overcome key roadblocks in both drug target discovery and precision medicine.


Asunto(s)
Neoplasias/terapia , Medicina de Precisión , Animales , Humanos , Terapia Molecular Dirigida
15.
J Clin Pathol ; 71(11): 957-962, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30104286

RESUMEN

Cyclin-dependent kinase 12 (CDK12) belongs to the cyclin-dependent kinase (CDK) family of serine/threonine protein kinases that regulate transcriptional and post-transcriptional processes, thereby modulating multiple cellular functions. Early studies characterised CDK12 as a transcriptional CDK that complexes with cyclin K to mediate gene transcription by phosphorylating RNA polymerase II. CDK12 has been demonstrated to specifically upregulate the expression of genes involved in response to DNA damage, stress and heat shock. More recent studies have implicated CDK12 in regulating mRNA splicing, 3' end processing, pre-replication complex assembly and genomic stability during embryonic development. Genomic alterations in CDK12 have been detected in oesophageal, stomach, breast, endometrial, uterine, ovarian, bladder, colorectal and pancreatic cancers, ranging from 5% to 15% of sequenced cases. An increasing number of studies point to CDK12 inhibition as an effective strategy to inhibit tumour growth, and synthetic lethal interactions have been described with MYC, EWS/FLI and PARP/CHK1 inhibition. Herein, we discuss the present literature on CDK12 in cell function and human cancer, highlighting important roles for CDK12 as a clinical biomarker for treatment response and potential as an effective therapeutic target.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Neoplasias/enzimología , Animales , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/antagonistas & inhibidores , Biomarcadores de Tumor/genética , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/genética , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Terapia Molecular Dirigida , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal/efectos de los fármacos
16.
Nat Commun ; 9(1): 2404, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921838

RESUMEN

A major hurdle in the study of rare tumors is a lack of existing preclinical models. Neuroendocrine prostate cancer is an uncommon and aggressive histologic variant of prostate cancer that may arise de novo or as a mechanism of treatment resistance in patients with pre-existing castration-resistant prostate cancer. There are few available models to study neuroendocrine prostate cancer. Here, we report the generation and characterization of tumor organoids derived from needle biopsies of metastatic lesions from four patients. We demonstrate genomic, transcriptomic, and epigenomic concordance between organoids and their corresponding patient tumors. We utilize these organoids to understand the biologic role of the epigenetic modifier EZH2 in driving molecular programs associated with neuroendocrine prostate cancer progression. High-throughput organoid drug screening nominated single agents and drug combinations suggesting repurposing opportunities. This proof of principle study represents a strategy for the study of rare cancer phenotypes.


Asunto(s)
Tumores Neuroendocrinos/genética , Organoides/metabolismo , Próstata/metabolismo , Neoplasias de la Próstata/genética , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Epigenómica/métodos , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Humanos , Masculino , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Tumores Neuroendocrinos/tratamiento farmacológico , Tumores Neuroendocrinos/patología , Organoides/patología , Fenotipo , Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Clin Cancer Res ; 24(12): 2828-2843, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29599409

RESUMEN

Purpose: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, with high mortality and a lack of targeted therapies. To identify and prioritize druggable targets, we performed genome analysis together with genome-scale siRNA and oncology drug profiling using low-passage tumor cells derived from a patient with treatment-resistant HPV-negative HNSCC.Experimental Design: A tumor cell culture was established and subjected to whole-exome sequencing, RNA sequencing, comparative genome hybridization, and high-throughput phenotyping with a siRNA library covering the druggable genome and an oncology drug library. Secondary screens of candidate target genes were performed on the primary tumor cells and two nontumorigenic keratinocyte cell cultures for validation and to assess cancer specificity. siRNA screens of the kinome on two isogenic pairs of p53-mutated HNSCC cell lines were used to determine generalizability. Clinical utility was addressed by performing drug screens on two additional HNSCC cell cultures derived from patients enrolled in a clinical trial.Results: Many of the identified copy number aberrations and somatic mutations in the primary tumor were typical of HPV(-) HNSCC, but none pointed to obvious therapeutic choices. In contrast, siRNA profiling identified 391 candidate target genes, 35 of which were preferentially lethal to cancer cells, most of which were not genomically altered. Chemotherapies and targeted agents with strong tumor-specific activities corroborated the siRNA profiling results and included drugs that targeted the mitotic spindle, the proteasome, and G2-M kinases WEE1 and CHK1 We also show the feasibility of ex vivo drug profiling for patients enrolled in a clinical trial.Conclusions: High-throughput phenotyping with siRNA and drug libraries using patient-derived tumor cells prioritizes mutated driver genes and identifies novel drug targets not revealed by genomic profiling. Functional profiling is a promising adjunct to DNA sequencing for precision oncology. Clin Cancer Res; 24(12); 2828-43. ©2018 AACR.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Terapia Molecular Dirigida , Medicina de Precisión , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/antagonistas & inhibidores , Biomarcadores de Tumor/genética , Hibridación Genómica Comparativa , Biología Computacional/métodos , Perfilación de la Expresión Génica , Genómica/métodos , Neoplasias de Cabeza y Cuello/diagnóstico , Neoplasias de Cabeza y Cuello/genética , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida/métodos , Mutación , Tomografía de Emisión de Positrones , Medicina de Precisión/métodos , ARN Interferente Pequeño/genética , Tomografía Computarizada por Rayos X , Transcriptoma , Secuenciación del Exoma
18.
Cell Syst ; 6(3): 282-300.e2, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29596783

RESUMEN

Although the MYC oncogene has been implicated in cancer, a systematic assessment of alterations of MYC, related transcription factors, and co-regulatory proteins, forming the proximal MYC network (PMN), across human cancers is lacking. Using computational approaches, we define genomic and proteomic features associated with MYC and the PMN across the 33 cancers of The Cancer Genome Atlas. Pan-cancer, 28% of all samples had at least one of the MYC paralogs amplified. In contrast, the MYC antagonists MGA and MNT were the most frequently mutated or deleted members, proposing a role as tumor suppressors. MYC alterations were mutually exclusive with PIK3CA, PTEN, APC, or BRAF alterations, suggesting that MYC is a distinct oncogenic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such as immune response and growth factor signaling; chromatin, translation, and DNA replication/repair were conserved pan-cancer. This analysis reveals insights into MYC biology and is a reference for biomarkers and therapeutics for cancers with alterations of MYC or the PMN.


Asunto(s)
Genes myc/genética , Genes myc/fisiología , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores de Tumor/genética , Carcinogénesis/genética , Cromatina , Biología Computacional/métodos , Genómica , Humanos , Neoplasias/genética , Neoplasias/fisiopatología , Oncogenes , Proteómica , Proteínas Proto-Oncogénicas c-myc/fisiología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética
19.
Oncotarget ; 9(3): 3483-3496, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-29423060

RESUMEN

c-Myc is a master regulator of various oncogenic functions in many types of human cancers. However, direct c-Myc-targeted therapy has not been successful in the clinic. Here, we explored a novel therapeutic target, which shows synthetic lethality in c-Myc-driven ovarian cancers, and examined the molecular mechanism of the synthetic lethal interaction. By high throughput siRNA screening with a library of 6,550 genes, Furin, a pro-protein convertase, was identified as the top hit gene. Furin inhibition by siRNA or a Furin inhibitor significantly suppressed cell proliferation in high c-Myc-expressing ovarian cancer cells compared with low c-Myc-expressing cells. Conversely, Furin overexpression in the presence of high c-Myc significantly promoted cell proliferation compared with only c-Myc or Furin overexpression. Notch1, one of the Furin substrates, was upregulated by c-Myc, and Notch1 cleaved by Furin increased cell proliferation of high c-Myc-expressing ovarian cancer cells. Notch1 was involved in the cooperative pathway of c-Myc and Furin in cell proliferation. In clinical ovarian cancer specimens, co-expression of c-Myc and Furin correlated with poor survival. In conclusion, we found that c-Myc cooperates with Furin to promote cell proliferation. Furin may be a promising therapeutic target in c-Myc-driven ovarian cancer.

20.
Cancer Discov ; 7(5): 462-477, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28331002

RESUMEN

Precision medicine is an approach that takes into account the influence of individuals' genes, environment, and lifestyle exposures to tailor interventions. Here, we describe the development of a robust precision cancer care platform that integrates whole-exome sequencing with a living biobank that enables high-throughput drug screens on patient-derived tumor organoids. To date, 56 tumor-derived organoid cultures and 19 patient-derived xenograft (PDX) models have been established from the 769 patients enrolled in an Institutional Review Board-approved clinical trial. Because genomics alone was insufficient to identify therapeutic options for the majority of patients with advanced disease, we used high-throughput drug screening to discover effective treatment strategies. Analysis of tumor-derived cells from four cases, two uterine malignancies and two colon cancers, identified effective drugs and drug combinations that were subsequently validated using 3-D cultures and PDX models. This platform thereby promotes the discovery of novel therapeutic approaches that can be assessed in clinical trials and provides personalized therapeutic options for individual patients where standard clinical options have been exhausted.Significance: Integration of genomic data with drug screening from personalized in vitro and in vivo cancer models guides precision cancer care and fuels next-generation research. Cancer Discov; 7(5); 462-77. ©2017 AACR.See related commentary by Picco and Garnett, p. 456This article is highlighted in the In This Issue feature, p. 443.


Asunto(s)
Ensayos de Selección de Medicamentos Antitumorales/métodos , Secuenciación del Exoma/métodos , Organoides , Medicina de Precisión/métodos , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Humanos , Ratones , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...