Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(3): e0282794, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36947524

RESUMEN

The toxic diatom genus Pseudo-nitzschia is distributed from equatorial to polar regions and is comprised of >57 species, some capable of producing the neurotoxin domoic acid (DA). In the Pacific Arctic Region spanning the Bering, Chukchi, and Beaufort seas, DA is recognized as an emerging human and ecosystem health threat, yet little is known about the composition and distribution of Pseudo-nitzschia species in these waters. This investigation characterized Pseudo-nitzschia assemblages in samples collected in 2018 during summer (August) and fall (October-November) surveys as part of the Distributed Biological Observatory and Arctic Observing Network, encompassing a broad geographic range (57.8° to 73.0°N, -138.9° to -169.9°W) and spanning temperature (-1.79 to 11.7°C) and salinity (22.9 to 32.9) gradients associated with distinct water masses. Species were identified using a genus-specific Automated Ribosomal Intergenic Spacer Analysis (ARISA). Seventeen amplicons were observed; seven corresponded to temperate, sub-polar, or polar Pseudo-nitzschia species based on parallel sequencing efforts (P. arctica, P. delicatissima, P. granii, P. obtusa, P. pungens, and two genotypes of P. seriata), and one represented Fragilariopsis oceanica. During summer, particulate DA (pDA; 4.0 to 130.0 ng L-1) was observed in the Bering Strait and Chukchi Sea where P. obtusa was prevalent. In fall, pDA (3.3 to 111.8 ng L-1) occurred along the Beaufort Sea shelf coincident with one P. seriata genotype, and south of the Bering Strait in association with the other P. seriata genotype. Taxa were correlated with latitude, longitude, temperature, salinity, pDA, and/or chlorophyll a, and each had a distinct distribution pattern. The observation of DA in association with different species, seasons, geographic regions, and water masses underscores the significant risk of Amnesic Shellfish Poisoning (ASP) and DA-poisoning in Alaska waters.


Asunto(s)
Diatomeas , Platelmintos , Animales , Humanos , Ecosistema , Alaska , Clorofila A , Ácido Kaínico/análisis , Agua/análisis
2.
Toxicon ; 191: 9-17, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33338449

RESUMEN

Brevetoxins were confirmed in urine specimens from patients diagnosed with neurotoxic shellfish poisoning (NSP) after consumption of gastropods that were recreationally harvested from an area previously affected by a Karenia brevis bloom. Several species of gastropods (Triplofusus giganteus, Sinistrofulgur sinistrum, Cinctura hunteria, Strombus alatus, Fulguropsis spirata) and one clam (Macrocallista nimbosa) from the NSP implicated gastropod collection area (Jewfish Key, Sarasota Bay, Florida) were examined for brevetoxins using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and enzyme-linked immunosorbent assay (ELISA). All gastropods and the clam were contaminated with brevetoxins. Composite B-type toxin concentrations in gastropods ranged from 1.1 to 198 µg BTX-3 equiv./g by ELISA, levels likely capable of causing NSP in consumers. Several brevetoxin metabolites previously characterized in molluscan shellfish were identified in these gastropods. Brevetoxin analog profiles by ELISA were similar in the gastropod species examined. This work documents the occurrence of NSP through consumption of a type of seafood not typically monitored in Florida to protect human health, demonstrating the need to better assess and communicate the risk of NSP to gastropod harvesters in Karenia brevis endemic areas.


Asunto(s)
Toxinas Marinas/orina , Oxocinas/orina , Intoxicación por Mariscos/epidemiología , Animales , Bioensayo , Bivalvos , Cromatografía Liquida , Dinoflagelados , Ensayo de Inmunoadsorción Enzimática , Florida/epidemiología , Gastrópodos , Humanos , Mariscos , Espectrometría de Masas en Tándem
3.
J Zoo Wildl Med ; 50(1): 33-44, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31120660

RESUMEN

Harmful algal blooms (HABs) occur when excess nutrients allow dinoflagellates to reproduce in large numbers. Marine animals are affected by blooms when algal toxins are ingested or inhaled. In the Gulf of Mexico, near annual blooms of Karenia brevis release a suite of compounds (brevetoxins) that cause sea turtle morbidity and mortality. The primary treatment at rehabilitation facilities for brevetoxin-exposed sea turtles is supportive care, and it has been difficult to design alternative treatment strategies without an understanding of the effects of brevetoxins in turtles in vivo. Previous studies using the freshwater turtle as a model species showed that brevetoxin-3 impacts the nervous and muscular systems, and is detoxified and eliminated primarily through the liver, bile, and feces. In this study, freshwater turtles (Trachemys scripta) were exposed to brevetoxin (PbTx-3) intratracheally at doses causing clear systemic effects, and treatment strategies aimed at reducing the postexposure neurological and muscular deficits were tested. Brevetoxin-exposed T. scripta displayed the same behaviors as animals admitted to rehabilitation centers for toxin exposure, ranging from muscle twitching and incoordination to paralysis and unresponsiveness. Two treatment regimes were tested: cholestyramine, a bile acid sequestrant; and an intravenous lipid emulsion treatment (Intralipidt) that provides an expanded circulating lipid volume. Cholestyramine was administered orally 1 hr and 6 hr post PbTx-3 exposure, but this regime failed to increase toxin clearance. Animals treated with Intralipid (100 mg/kg) 30 min after PbTx-3 exposure had greatly reduced symptoms of brevetoxicosis within the first 2 hr compared with animals that did not receive the treatment, and appeared fully recovered within 24 hr compared with toxin-exposed control animals that did not receive Intralipid. The results strongly suggest that Intralipid treatment for lipophilic toxins such as PbTx-3 has the potential to reduce morbidity and mortality in HAB-exposed sea turtles.


Asunto(s)
Emulsiones Grasas Intravenosas/uso terapéutico , Toxinas Marinas/toxicidad , Neurotoxinas/toxicidad , Oxocinas/toxicidad , Intoxicación/veterinaria , Sustancias Protectoras/uso terapéutico , Tortugas/fisiología , Animales , Resina de Colestiramina/uso terapéutico , Intoxicación/tratamiento farmacológico
4.
Dis Aquat Organ ; 132(2): 109-124, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30628577

RESUMEN

Data on Karenia brevis red tides (≥105 cells l-1) and on dead or debilitated (i.e. stranded) Kemp's ridleys Lepidochelys kempii, loggerheads Caretta caretta, green turtles Chelonia mydas, hawksbills Eretmochelys imbricata, and leatherbacks Dermochelys coriacea documented in Florida during 1986-2013 were evaluated to assess red tides as a sea turtle mortality factor. Unusually large numbers of stranded sea turtles were found coincident with red tides primarily along Florida's Gulf coast but also along a portion of Florida's Atlantic coast. These strandings were mainly adult and large immature loggerheads and Kemp's ridleys, and small immature green turtles and hawksbills. Unusually large numbers of stranded leatherbacks never coincided with red tide. For the 3 most common species, results of stranding data modeling, and of investigations that included determining brevetoxin concentrations in samples collected from stranded turtles, all indicated that red tides were associated with greater and more frequent increases in the numbers of stranded loggerheads and Kemp's ridleys than in the number of stranded green turtles. The mean annual number of stranded sea turtles attributed to K. brevis red tide was 80 (SE = 21.6, range = 2-338). Considering typical stranding probabilities, the overall mortality was probably 5-10 times greater. Red tide accounted for a substantial portion of all stranded loggerheads (7.1%) and Kemp's ridleys (17.7%), and a smaller portion of all stranded green turtles (1.6%). Even though K. brevis red tides occur naturally, the mortality they cause needs to be considered when managing these threatened and endangered species.


Asunto(s)
Dinoflagelados , Tortugas , Animales , Florida , Floraciones de Algas Nocivas
5.
Aquat Toxicol ; 187: 29-37, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28363127

RESUMEN

Harmful algal blooms (HABs) occur nearly annually off the west coast of Florida and can impact both humans and wildlife, resulting in morbidity and increased mortality of marine animals including sea turtles. The key organism in Florida red tides is the dinoflagellate Karenia brevis that produces a suite of potent neurotoxins referred to as the brevetoxins (PbTx). Despite recent mortality events and rehabilitation efforts, still little is known about how the toxin directly impacts sea turtles, as they are not amenable to experimentation and what is known about toxin levels and distribution comes primarily from post-mortem data. In this study, we utilized the freshwater turtle Trachemys scripta and the diamondback terrapin, Malaclemys terrapin as model organisms to determine the distribution, clearance, and routes of excretion of the most common form of the toxin, brevetoxin-3, in turtles. Turtles were administered toxin via esophageal tube to mimic ingestion (33.48µg/kg PbTx-3, 3×/week for two weeks for a total of 7 doses) or by intratracheal instillation (10.53µg/kg, 3×/week for four weeks for a total of 12 doses) to mimic inhalation. Both oral and intratracheal administration of the toxin produced a suite of behavioral responses symptomatic of brevetoxicosis. The toxin distributed to all organ systems within 1h of administration but was rapidly cleared out over 24-48h, corresponding to a decline in clinical symptoms. Excretion appears to be primarily through conjugation to bile salts. Histopathological study revealed that the frequency of lesions varied within experimental groups with some turtles having no significant lesions at all, while similar lesions were found in a low number of control turtles suggesting another common factor(s) could be responsible. The overall goal of this research is better understand the impacts of brevetoxin on turtles in order to develop better treatment protocols for sea turtles exposed to HABs.


Asunto(s)
Toxinas Marinas/farmacocinética , Neurotoxinas/farmacocinética , Oxocinas/farmacocinética , Tortugas/metabolismo , Contaminantes Químicos del Agua/farmacocinética , Administración Oral , Animales , Conducta Animal/efectos de los fármacos , Dinoflagelados/metabolismo , Femenino , Florida , Agua Dulce/química , Floraciones de Algas Nocivas , Humanos , Exposición por Inhalación , Masculino , Toxinas Marinas/toxicidad , Tasa de Depuración Metabólica , Modelos Biológicos , Neurotoxinas/toxicidad , Especificidad de Órganos , Oxocinas/toxicidad , Distribución Tisular , Contaminantes Químicos del Agua/toxicidad
6.
Toxicon ; 50(5): 707-23, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17675204

RESUMEN

Brevetoxins and ciguatoxins are closely related potent marine neurotoxins. Although ciguatoxins accumulate in fish to levels that are dangerous for human consumption, live fish have not been considered as potential sources of brevetoxin exposure in humans. Here we show that, analogous to ciguatoxins, brevetoxins can accumulate in live fish by dietary transfer. We experimentally identify two pathways leading to brevetoxin-contaminated omnivorous and planktivorous fish. Fish fed with toxic shellfish and Karenia brevis cultures remained healthy and accumulated high brevetoxin levels in their tissues (up to 2675 ng g(-1) in viscera and 1540 ng g(-1) in muscle). Repeated collections of fish from St. Joseph Bay in the Florida panhandle reveal that accumulation of brevetoxins in healthy fish occurs in the wild. We observed that levels of brevetoxins in the muscle of fish at all trophic levels rise significantly, but not to dangerous levels, during a K. brevis bloom. Concentrations were highest in fish liver and stomach contents, and increased during and immediately following the bloom. The persistence of brevetoxins in the fish food web was followed for 1 year after the K. brevis bloom.


Asunto(s)
Cadena Alimentaria , Toxinas Marinas/farmacocinética , Neurotoxinas/farmacocinética , Oxocinas/farmacocinética , Smegmamorpha/fisiología , Alimentación Animal , Animales , Dinoflagelados/metabolismo , Monitoreo del Ambiente , Eutrofización , Contenido Digestivo/química , Contenido Digestivo/efectos de los fármacos , Toxinas Marinas/análisis , Toxinas Marinas/toxicidad , Mercenaria/química , Músculo Esquelético/química , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Neurotoxinas/análisis , Neurotoxinas/toxicidad , Oxocinas/análisis , Oxocinas/toxicidad , Mariscos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...