Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Pers Med ; 11(5)2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923231

RESUMEN

The use of cyclin-dependent kinase 4/6 (CDK4/6) inhibitors represents a potent strategy for cancer therapy. Due to the complex molecular network that regulates cell cycle progression, cancer cells often acquire resistance mechanisms against these inhibitors. Previously, our group identified molecular factors conferring resistance to CDK4/6 inhibition in bladder cancer (BLCA) that also included components within the DNA repair pathway. In this study, we validated whether a combinatory treatment approach of the CDK4/6 inhibitor Palbociclib with Poly-(ADP-Ribose) Polymerase (PARP) inhibitors improves therapy response in BLCA. First, a comparison of PARP inhibitors Talazoparib and Olaparib showed superior efficacy of Talazoparib in vitro and displayed high antitumor activity in xenografts in the chicken chorioallantoic membrane (CAM) model. Moreover, the combination of Talazoparib and the CDK4/6 inhibitor Palbociclib synergistically reduced tumor growth in Retinoblastoma protein (RB)-positive BLCA in vitro and in a CAM model, an effect that relies on Palbociclib-induced cell cycle arrest in G0/G1-phase complemented by a G2 arrest induced by Talazoparib. Interestingly, Talazoparib-induced apoptosis was reduced by Palbociclib. The combination of Palbociclib and Talazoparib effectively enhances BLCA therapy, and RB is a molecular biomarker of response to this treatment regimen.

2.
Sci Rep ; 10(1): 10953, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616790

RESUMEN

Anatomically incomplete spinal cord injuries can be followed by functional recovery mediated, in part, by the formation of intraspinal detour circuits. Here, we show that adult mice recover tactile and proprioceptive function following a unilateral dorsal column lesion. We therefore investigated the basis of this recovery and focused on the plasticity of the dorsal column-medial lemniscus pathway. We show that ascending dorsal root ganglion (DRG) axons branch in the spinal grey matter and substantially increase the number of these collaterals following injury. These sensory fibers exhibit synapsin-positive varicosities, indicating their integration into spinal networks. Using a monosynaptic circuit tracing with rabies viruses injected into the cuneate nucleus, we show the presence of spinal cord neurons that provide a detour pathway to the original target area of DRG axons. Notably the number of contacts between DRG collaterals and those spinal neurons increases by more than 300% after injury. We then characterized these interneurons and showed that the lesion triggers a remodeling of the connectivity pattern. Finally, using re-lesion experiments after initial remodeling of connections, we show that these detour circuits are responsible for the recovery of tactile and proprioceptive function. Taken together our study reveals that detour circuits represent a common blueprint for axonal rewiring after injury.


Asunto(s)
Ganglios Espinales/fisiología , Regeneración Nerviosa , Vías Nerviosas , Neuronas/fisiología , Recuperación de la Función , Células Receptoras Sensoriales/fisiología , Traumatismos de la Médula Espinal/prevención & control , Animales , Conducta Animal , Ganglios Espinales/citología , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal , Neuronas/citología , Traumatismos de la Médula Espinal/etiología , Traumatismos de la Médula Espinal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...