Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 6(10): 5519-5526, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33320559

RESUMEN

The Humboldt squid is one of the fiercest marine predators thanks in part to its sucker ring teeth that are biopolymer blends of a protein isoform family called suckerin with compression strength that rivals silkworm silk. Here, we focus on the popular suckerin-12 isoform to understand what makes the secondary structure of this biopolymer different in water and the potential role of diverse physical and chemical cross-linkings. By choosing a salt post-treatment, in accordance with the Hofmeister series, we achieved film stability with salt annealing that is comparable to chemical cross-links. By correlating the film morphology with the protein secondary structure changes, suckerin-12 films were shown to contract upon treatment with kosmotropic salts and exhibited increased stability in water. These changes are related to the rearrangement of suckerin-12 secondary structure from random coils and helices to ß-sheets. Overall, understanding secondary structure changes caused by aqueous and ionic environments can be instructive for the tuning of the suckerin film sclerotization, its conversion to a tough biological material, and to ultimately produce the natural squid sucker ring teeth.


Asunto(s)
Decapodiformes , Seda , Animales , Conformación Proteica en Lámina beta , Estabilidad Proteica , Estructura Secundaria de Proteína
2.
Adv Mater ; 28(7): 1501-9, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26643976

RESUMEN

Ultra-robust nanomembranes possessing high mechanical strength combined with excellent stiffness and toughness rarely achieved in nanocomposite materials are presented. These are fabricated by alternately depositing 1D cellulose nanocrystals and 2D graphene oxide nanosheets by using a spin assisted layer-by-layer assembly technique. Such a unique combination of 1D and 2D reinforcing nanostructures results in layered nanomaterials.

3.
Langmuir ; 31(39): 10859-70, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26362244

RESUMEN

Ultrathin and robust nanocomposite membranes were fabricated by incorporating graphene oxide (GO) sheets into a silk fibroin (SF) matrix by a dynamic spin-assisted layer-by-layer assembly (dSA-LbL). We observed that in contrast to traditional SA-LbL reported earlier fast solution removal during dropping of solution on constantly spinning substrates resulted in largely unfolded biomacromolecules with enhanced surface interactions and suppressed nanofibril formation. The resulting laminated nanocomposites possess outstanding mechanical properties, significantly exceeding those previously reported for conventional LbL films with similar composition. The tensile modulus reached extremely high values of 170 GPa, which have never been reported for graphene oxide-based nanocomposites, the ultimate strength was close to 300 MPa, and the toughness was above 3.4 MJ m(-3). The failure modes observed for these membranes suggested the self-reinforcing mechanism of adjacent graphene oxide sheets with strong 2 nm thick silk interphase composed mostly from individual backbones. This interphase reinforcement leads to the effective load transfer between the graphene oxide components in reinforced laminated nanocomposite materials with excellent mechanical strength that surpasses those known today for conventional flexible laminated carbon nanocomposites from graphene oxide and biopolymer components.


Asunto(s)
Biopolímeros/química , Fibroínas/química , Nanocompuestos/química , Grafito/química , Óxidos/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...