Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Genes Dev ; 37(11-12): 518-534, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37442580

RESUMEN

The DNA double-strand breaks (DSBs) that initiate meiotic recombination are formed by an evolutionarily conserved suite of factors that includes Rec114 and Mei4 (RM), which regulate DSB formation both spatially and temporally. In vivo, these proteins form large immunostaining foci that are integrated with higher-order chromosome structures. In vitro, they form a 2:1 heterotrimeric complex that binds cooperatively to DNA to form large, dynamic condensates. However, understanding of the atomic structures and dynamic DNA binding properties of RM complexes is lacking. Here, we report a structural model of a heterotrimeric complex of the C terminus of Rec114 with the N terminus of Mei4, supported by nuclear magnetic resonance experiments. This minimal complex, which lacks the predicted intrinsically disordered region of Rec114, is sufficient to bind DNA and form condensates. Single-molecule experiments reveal that the minimal complex can bridge two or more DNA duplexes and can generate force to condense DNA through long-range interactions. AlphaFold2 predicts similar structural models for RM orthologs across diverse taxa despite their low degree of sequence similarity. These findings provide insight into the conserved networks of protein-protein and protein-DNA interactions that enable condensate formation and promote formation of meiotic DSBs.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromosomas/metabolismo , Meiosis , Roturas del ADN de Doble Cadena , ADN
2.
bioRxiv ; 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36711595

RESUMEN

The DNA double-strand breaks (DSBs) that initiate meiotic recombination are formed by an evolutionarily conserved suite of factors that includes Rec114 and Mei4 (RM), which regulate DSB formation both spatially and temporally. In vivo , these proteins form large immunostaining foci that are integrated with higher order chromosome structures. In vitro , they form a 2:1 heterotrimeric complex that binds cooperatively to DNA to form large, dynamic condensates. However, understanding of the atomic structures and dynamic DNA binding properties of RM complexes is lacking. Here, we report a structural model of a heterotrimeric complex of the C-terminus of Rec114 with the N-terminus of Mei4, supported by nuclear magnetic resonance experiments. This minimal complex, which lacks the predicted intrinsically disordered region of Rec114, is sufficient to bind DNA and form condensates. Single-molecule experiments reveal that the minimal complex can bridge two or more DNA duplexes and can generate force to condense DNA through long-range interactions. AlphaFold2 predicts similar structural models for RM orthologs across diverse taxa despite their low degree of sequence similarity. These findings provide insight into the conserved networks of protein-protein and protein-DNA interactions that enable condensate formation and promote formation of meiotic DSBs.

3.
J Mol Biol ; 435(1): 167710, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35777466

RESUMEN

Complexins play a critical role in regulating SNARE-mediated exocytosis of synaptic vesicles. Evolutionary divergences in complexin function have complicated our understanding of the role these proteins play in inhibiting the spontaneous fusion of vesicles. Previous structural and functional characterizations of worm and mouse complexins have indicated the membrane curvature-sensing C-terminal domain of these proteins is responsible for differences in inhibitory function. We have characterized the structure and dynamics of the mCpx1 CTD in the absence and presence of membranes and membrane mimetics using NMR, ESR, and optical spectroscopies. In the absence of lipids, the mCpx1 CTD features a short helix near its N-terminus and is otherwise disordered. In the presence of micelles and small unilamellar vesicles, the mCpx1 CTD forms a discontinuous helical structure in its C-terminal 20 amino acids, with no preference for specific lipid compositions. In contrast, the mCpx1 CTD shows distinct compositional preferences in its interactions with large unilamellar vesicles. These studies identify structural divergences in the mCpx1 CTD relative to the wCpx1 CTD in regions that are known to be critical to the wCpx1 CTD's role in inhibiting spontaneous fusion of synaptic vesicles, suggesting a potential structural basis for evolutionary divergences in complexin function.1.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Proteínas del Tejido Nervioso , Liposomas Unilamelares , Animales , Ratones , Proteínas Adaptadoras del Transporte Vesicular/química , Calcio/química , Exocitosis , Fusión de Membrana , Proteínas del Tejido Nervioso/química , Unión Proteica , Proteínas SNARE/metabolismo , Vesículas Sinápticas/química , Liposomas Unilamelares/química , Dominios Proteicos
4.
Biophys J ; 120(12): 2498-2510, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33901472

RESUMEN

Defining the role of intrinsic disorder in proteins in the myriad of biological processes with which it is involved represents a significant goal in modern biophysics. Toward this end, NMR is uniquely suited for molecular studies of dynamic and disordered regions, but studying these regions in concert with their more structured domains and binding partners presents spectroscopic challenges. Here, we investigate the interactions between the structured and disordered regions of the human glucocorticoid receptor (GR). To do this, we developed an NMR strategy that relies on a novel relaxation filter for the simultaneous study of structured and unstructured regions. Using this approach, we conducted a comparative analysis of three translational isoforms of GR containing a folded DNA-binding domain (DBD) and two disordered regions that flank the DBD, one of which varies in size in the different isoforms. Notably, we were able to assign resonances that had previously been inaccessible because of the spectral complexity of the translational isoforms, which in turn allowed us to 1) identify a region of the structured DBD that undergoes significant changes in the local chemical environment in the presence of the disordered region and 2) determine differences in the conformational ensembles of the disordered regions of the translational isoforms. Furthermore, an ensemble-based thermodynamic analysis of the isoforms reveals conserved patterns of stability within the N-terminal domain of GR that persist despite low sequence conservation. These studies provide an avenue for further investigations of the mechanistic underpinnings of the functional relevance of the translational isoforms of GR while also providing a general NMR strategy for studying systems containing both structured and disordered regions.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Receptores de Glucocorticoides , Humanos , Espectroscopía de Resonancia Magnética , Conformación Proteica , Dominios Proteicos , Isoformas de Proteínas , Termodinámica
5.
Nucleic Acids Res ; 48(1): 304-315, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31754723

RESUMEN

Influenza A viruses cause widespread human respiratory disease. The viral multifunctional NS1 protein inhibits host antiviral responses. This inhibition results from the binding of specific cellular antiviral proteins at various positions on the NS1 protein. Remarkably, binding of several proteins also requires the two amino-acid residues in the NS1 N-terminal RNA-binding domain (RBD) that are required for binding double-stranded RNA (dsRNA). Here we focus on the host restriction factor DHX30 helicase that is countered by the NS1 protein, and establish why the dsRNA-binding activity of NS1 is required for its binding to DHX30. We show that the N-terminal 152 amino-acid residue segment of DHX30, denoted DHX30N, possesses all the antiviral activity of DHX30 and contains a dsRNA-binding domain, and that the NS1-DHX30 interaction in vivo requires the dsRNA-binding activity of both DHX30N and the NS1 RBD. We demonstrate why this is the case using bacteria-expressed proteins: the DHX30N-NS1 RBD interaction in vitro requires the presence of a dsRNA platform that binds both NS1 RBD and DHX30N. We propose that a similar dsRNA platform functions in interactions of the NS1 protein with other proteins that requires these same two amino-acid residues required for NS1 RBD dsRNA-binding activity.


Asunto(s)
Interacciones Huésped-Patógeno/genética , ARN Helicasas/genética , ARN Bicatenario/genética , Proteínas no Estructurales Virales/genética , Animales , Sitios de Unión , Clonación Molecular , Perros , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Células HeLa , Humanos , Células de Riñón Canino Madin Darby , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , ARN Helicasas/química , ARN Helicasas/metabolismo , ARN Bicatenario/química , ARN Bicatenario/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo
6.
J Phys Chem Lett ; 9(2): 383-387, 2018 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-29266956

RESUMEN

Ionizable residues buried in hydrophobic environments in proteins are essential for many fundamental biochemical processes. These residues titrate with anomalous pKa values that are challenging to reproduce with structure-based calculations owing to the conformational reorganization coupled to their ionization. Detailed characterization of this conformational reorganization is of interest; unfortunately, the properties of buried Lys residues are difficult to study experimentally. Here we demonstrate the utility of 15N NMR spectroscopy to gain insight into the protonation state, state of hydration and conformational dynamics of the Nζ amino group of buried Lys residues. The experiments were applied to five variants of staphylococcal nuclease, with internal Lys residues that titrate with pKa values ranging from 6.2 to 8.1. Direct detection of buried Lys residues with these NMR spectroscopy methods will enable correlation between thermodynamic and structural data as well as unprecedented examination of how conformational transitions coupled to their ionization affect their pKa values.


Asunto(s)
Desoxirribonucleasas/química , Espectroscopía de Resonancia Magnética , Nucleasa Microcócica/química , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA