Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Physiol ; 601(16): 3533-3556, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37309891

RESUMEN

Carnitine palmitoyltransferase 1c (CPT1C) is a neuron-specific protein widely distributed throughout the CNS and highly expressed in discrete brain areas including the hypothalamus, hippocampus, amygdala and different motor regions. Its deficiency has recently been shown to disrupt dendritic spine maturation and AMPA receptor synthesis and trafficking in the hippocampus, but its contribution to synaptic plasticity and cognitive learning and memory processes remains mostly unknown. Here, we aimed to explore the molecular, synaptic, neural network and behavioural role of CPT1C in cognition-related functions by using CPT1C knockout (KO) mice. CPT1C-deficient mice showed extensive learning and memory deficits. The CPT1C KO animals exhibited impaired motor and instrumental learning that seemed to be related, in part, to locomotor deficits and muscle weakness but not to mood alterations. In addition, CPT1C KO mice showed detrimental hippocampus-dependent spatial and habituation memory, most probably attributable to inefficient dendritic spine maturation, impairments in long-term plasticity at the CA3-CA1 synapse and aberrant cortical oscillatory activity. In conclusion, our results reveal that CPT1C is not only crucial for motor function, coordination and energy homeostasis, but also has a crucial role in the maintenance of learning and memory cognitive functions. KEY POINTS: CPT1C, a neuron-specific interactor protein involved in AMPA receptor synthesis and trafficking, was found to be highly expressed in the hippocampus, amygdala and various motor regions. CPT1C-deficient animals exhibited energy deficits and impaired locomotion, but no mood changes were found. CPT1C deficiency disrupts hippocampal dendritic spine maturation and long-term synaptic plasticity and reduces cortical γ oscillations. CPT1C was found to be crucial for motor, associative and non-associative learning and memory.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Receptores AMPA , Animales , Ratones , Encéfalo/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo , Ratones Noqueados , Plasticidad Neuronal , Neuronas/metabolismo , Receptores AMPA/genética , Receptores AMPA/metabolismo
2.
Elife ; 92020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32452760

RESUMEN

AMPARs control fast synaptic communication between neurons and their function relies on auxiliary subunits, which importantly modulate channel properties. Although it has been suggested that AMPARs can bind to TARPs with variable stoichiometry, little is known about the effect that this stoichiometry exerts on certain AMPAR properties. Here we have found that AMPARs show a clear stoichiometry-dependent modulation by the prototypical TARP γ2 although the receptor still needs to be fully saturated with γ2 to show some typical TARP-induced characteristics (i.e. an increase in channel conductance). We also uncovered important differences in the stoichiometric modulation between calcium-permeable and calcium-impermeable AMPARs. Moreover, in heteromeric AMPARs, γ2 positioning in the complex is important to exert certain TARP-dependent features. Finally, by comparing data from recombinant receptors with endogenous AMPAR currents from mouse cerebellar granule cells, we have determined a likely presence of two γ2 molecules at somatic receptors in this cell type.


Asunto(s)
Canales de Calcio/metabolismo , Receptores de Glutamato/metabolismo , Animales , Cerebelo/citología , Cerebelo/metabolismo , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Cultivo Primario de Células
3.
Sci Signal ; 12(586)2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31213567

RESUMEN

Autosomal dominant mutations in GRIN2B are associated with severe encephalopathy, but little is known about the pathophysiological outcomes and any potential therapeutic interventions. Genetic studies have described the association between de novo mutations of genes encoding the subunits of the N-methyl-d-aspartate receptor (NMDAR) and severe neurological conditions. Here, we evaluated a missense mutation in GRIN2B, causing a proline-to-threonine switch (P553T) in the GluN2B subunit of NMDAR, which was found in a 5-year-old patient with Rett-like syndrome with severe encephalopathy. Structural molecular modeling predicted a reduced pore size of the mutant GluN2B-containing NMDARs. Electrophysiological recordings in a HEK-293T cell line expressing the mutated subunit confirmed this prediction and showed an associated reduced glutamate affinity. Moreover, GluN2B(P553T)-expressing primary murine hippocampal neurons showed decreased spine density, concomitant with reduced NMDA-evoked currents and impaired NMDAR-dependent insertion of the AMPA receptor subunit GluA1 at stimulated synapses. Furthermore, the naturally occurring coagonist d-serine restored function to GluN2B(P553T)-containing NMDARs. l-Serine dietary supplementation of the patient was hence initiated, resulting in the increased abundance of d-serine in the plasma and brain. The patient has shown notable improvements in motor and cognitive performance and communication after 11 and 17 months of l-serine dietary supplementation. Our data suggest that l-serine supplementation might ameliorate GRIN2B-related severe encephalopathy and other neurological conditions caused by glutamatergic signaling deficiency.


Asunto(s)
Encefalopatías , Suplementos Dietéticos , Mutación con Pérdida de Función , Receptores de N-Metil-D-Aspartato , Síndrome de Rett , Serina , Animales , Encefalopatías/tratamiento farmacológico , Encefalopatías/genética , Encefalopatías/metabolismo , Encefalopatías/patología , Niño , Cognición/efectos de los fármacos , Humanos , Masculino , Ratones , Modelos Moleculares , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , N-Metilaspartato/farmacología , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patología , Serina/administración & dosificación , Serina/farmacocinética
4.
Elife ; 72018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30465522

RESUMEN

Glutamate receptors are divided in two unrelated families: ionotropic (iGluR), driving synaptic transmission, and metabotropic (mGluR), which modulate synaptic strength. The present classification of GluRs is based on vertebrate proteins and has remained unchanged for over two decades. Here we report an exhaustive phylogenetic study of GluRs in metazoans. Importantly, we demonstrate that GluRs have followed different evolutionary histories in separated animal lineages. Our analysis reveals that the present organization of iGluRs into six classes does not capture the full complexity of their evolution. Instead, we propose an organization into four subfamilies and ten classes, four of which have never been previously described. Furthermore, we report a sister class to mGluR classes I-III, class IV. We show that many unreported proteins are expressed in the nervous system, and that new Epsilon receptors form functional ligand-gated ion channels. We propose an updated classification of glutamate receptors that includes our findings.


Asunto(s)
Evolución Molecular , Variación Genética , Receptores Ionotrópicos de Glutamato/genética , Receptores de Glutamato Metabotrópico/genética , Secuencia de Aminoácidos , Animales , Teorema de Bayes , Sitios de Unión/genética , Células HEK293 , Humanos , Modelos Moleculares , Filogenia , Dominios Proteicos , Receptores Ionotrópicos de Glutamato/química , Receptores Ionotrópicos de Glutamato/clasificación , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/clasificación , Homología de Secuencia de Aminoácido
5.
Front Mol Neurosci ; 11: 275, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30135643

RESUMEN

In neurons, AMPA receptor (AMPAR) function depends essentially on their constituent components:the ion channel forming subunits and ion channel associated proteins. On the other hand, AMPAR trafficking is tightly regulated by a vast number of intracellular neuronal proteins that bind to AMPAR subunits. It has been recently shown that the interaction between the GluA1 subunit of AMPARs and carnitine palmitoyltransferase 1C (CPT1C), a novel protein partner of AMPARs, is important in modulating surface expression of these ionotropic glutamate receptors. Indeed, synaptic transmission in CPT1C knockout (KO) mice is diminished supporting a positive trafficking role for that protein. However, the molecular mechanisms of such modulation remain unknown although a putative role of CPT1C in depalmitoylating GluA1 has been hypothesized. Here, we explore that possibility and show that CPT1C effect on AMPARs is likely due to changes in the palmitoylation state of GluA1. Based on in silico analysis, Ser 252, His 470 and Asp 474 are predicted to be the catalytic triad responsible for CPT1C palmitoyl thioesterase (PTE) activity. When these residues are mutated or when PTE activity is inhibited, the CPT1C effect on AMPAR trafficking is abolished, validating the CPT1C catalytic triad as being responsible for PTE activity on AMPAR. Moreover, the histidine residue (His 470) of CPT1C is crucial for the increase in GluA1 surface expression in neurons and the H470A mutation impairs the depalmitoylating catalytic activity of CPT1C. Finally, we show that CPT1C effect seems to be specific for this CPT1 isoform and it takes place solely at endoplasmic reticulum (ER). This work adds another facet to the impressive degree of molecular mechanisms regulating AMPAR physiology.

6.
ACS Chem Neurosci ; 9(11): 2722-2730, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29767953

RESUMEN

This work reports the synthesis and pharmacological and electrophysiological evaluation of new N-methyl-d-aspartic acid receptor (NMDAR) channel blocking antagonists featuring polycyclic scaffolds. Changes in the chemical structure modulate the potency and voltage dependence of inhibition. Two of the new antagonists display properties comparable to those of memantine, a clinically approved NMDAR antagonist.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/síntesis química , Neuronas/efectos de los fármacos , Compuestos Policíclicos/síntesis química , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Aminas/síntesis química , Aminas/farmacología , Animales , Cerebelo/citología , Antagonistas de Aminoácidos Excitadores/farmacología , Concentración 50 Inhibidora , Memantina/farmacología , Técnicas de Placa-Clamp , Compuestos Policíclicos/farmacología , Ratas , Relación Estructura-Actividad
7.
Biol Psychiatry ; 83(2): 160-172, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28734458

RESUMEN

BACKGROUND: N-Methyl-D-aspartate receptors (NMDARs) play pivotal roles in synaptic development, plasticity, neural survival, and cognition. Despite recent reports describing the genetic association between de novo mutations of NMDAR subunits and severe psychiatric diseases, little is known about their pathogenic mechanisms and potential therapeutic interventions. Here we report a case study of a 4-year-old Rett-like patient with severe encephalopathy carrying a missense de novo mutation in GRIN2B(p.P553T) coding for the GluN2B subunit of NMDAR. METHODS: We generated a dynamic molecular model of mutant GluN2B-containing NMDARs. We expressed the mutation in cell lines and primary cultures, and we evaluated the putative morphological, electrophysiological, and synaptic plasticity alterations. Finally, we evaluated D-serine administration as a therapeutic strategy and translated it to the clinical practice. RESULTS: Structural molecular modeling predicted a reduced pore size of mutant NMDARs. Electrophysiological recordings confirmed this prediction and also showed gating alterations, a reduced glutamate affinity associated with a strong decrease of NMDA-evoked currents. Moreover, GluN2B(P553T)-expressing neurons showed decreased spine density, concomitant with reduced NMDA-evoked currents and impaired NMDAR-dependent insertion of GluA1 at stimulated synapses. Notably, the naturally occurring coagonist D-serine was able to attenuate hypofunction of GluN2B(p.P553T)-containing NMDARs. Hence, D-serine dietary supplementation was initiated. Importantly, the patient has shown remarkable motor, cognitive, and communication improvements after 17 months of D-serine dietary supplementation. CONCLUSIONS: Our data suggest that hypofunctional NMDARs containing GluN2B(p.P553T) can contribute to Rett-like encephalopathy and that their potentiation by D-serine treatment may underlie the associated clinical improvement.

8.
J Neurosci ; 34(35): 11673-83, 2014 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-25164663

RESUMEN

Many properties of fast synaptic transmission in the brain are influenced by transmembrane AMPAR regulatory proteins (TARPs) that modulate the pharmacology and gating of AMPA-type glutamate receptors (AMPARs). Although much is known about TARP influence on AMPAR pharmacology and kinetics through their modulation of the extracellular ligand-binding domain (LBD), less is known about their regulation of the ion channel region. TARP-induced modifications in AMPAR channel behavior include increased single-channel conductance and weakened block of calcium-permeable AMPARs (CP-AMPARs) by endogenous intracellular polyamines. To investigate how TARPs modify ion flux and channel block, we examined the action of γ-2 (stargazin) on GluA1 and GluA4 CP-AMPARs. First, we compared the permeation of organic cations of different sizes. We found that γ-2 increased the permeability of several cations but not the estimated AMPAR pore size, suggesting that TARP-induced relief of polyamine block does not reflect altered pore diameter. Second, to determine whether residues in the TARP intracellular C-tail regulate polyamine block and channel conductance, we examined various γ-2 C-tail mutants. We identified the membrane proximal region of the C terminus as crucial for full TARP-attenuation of polyamine block, whereas complete deletion of the C-tail markedly enhanced the TARP-induced increase in channel conductance; thus, the TARP C-tail influences ion permeation. Third, we identified a site in the pore-lining region of the AMPAR, close to its Q/R site, that is crucial in determining the TARP-induced changes in single-channel conductance. This conserved residue represents a site of TARP action, independent of the AMPAR LBD.


Asunto(s)
Canales de Calcio/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Receptores AMPA/metabolismo , Transmisión Sináptica/fisiología , Animales , Línea Celular , Humanos , Técnicas de Placa-Clamp , Poliaminas/metabolismo , Ratas , Transfección
9.
Front Cell Neurosci ; 8: 469, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25698923

RESUMEN

AMPARs mediate the vast majority of fast excitatory synaptic transmission in the brain and their biophysical and trafficking properties depend on their subunit composition and on several posttranscriptional and posttranslational modifications. Additionally, in the brain AMPARs associate with auxiliary subunits, which modify the properties of the receptors. Despite the abundance of AMPAR partners, recent proteomic studies have revealed even more interacting proteins that could potentially be involved in AMPAR regulation. Amongst these, carnitine palmitoyltransferase 1C (CPT1C) has been demonstrated to form an integral part of native AMPAR complexes in brain tissue extracts. Thus, we aimed to investigate whether CPT1C might be able to modulate AMPAR function. Firstly, we confirmed that CPT1C is an interacting protein of AMPARs in heterologous expression systems. Secondly, CPT1C enhanced whole-cell currents of GluA1 homomeric and GluA1/GluA2 heteromeric receptors. However, CPT1C does not alter the biophysical properties of AMPARs and co-localization experiments revealed that AMPARs and CPT1C are not associated at the plasma membrane despite a strong level of co-localization at the intracellular level. We established that increased surface GluA1 receptor number was responsible for the enhanced AMPAR mediated currents in the presence of CPT1C. Additionally, we revealed that the palmitoylable residue C585 of GluA1 is important in the enhancement of AMPAR trafficking to the cell surface by CPT1C. Nevertheless, despite its potential as a depalmitoylating enzyme, CPT1C does not affect the palmitoylation state of GluA1. To sum up, this work suggests that CPT1C plays a role as a novel regulator of AMPAR surface expression in neurons. Fine modulation of AMPAR membrane trafficking is fundamental in normal synaptic activity and in plasticity processes and CPT1C is therefore a putative candidate to regulate neuronal AMPAR physiology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...