Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Biomolecules ; 14(6)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38927067

RESUMEN

Selective staining of extracellular vesicles (EVs) is a major challenge for diagnostic and therapeutic applications. Herein, the EV labeling properties of a new class of tetranuclear polypyridylruthenium(II) complexes, Rubb7-TNL and Rubb7-TL, as phosphorescent stains are described. These new stains have many advantages over standard stains to detect and characterize EVs, including: high specificity for EV staining versus cell staining; high phosphorescence yields; photostability; and a lack of leaching from EVs until incorporation with target cells. As an example of their utility, large EVs released from control (basal) or lipopolysaccharide (LPS)-stimulated THP-1 monocytic leukemia cells were studied as a model of immune system EVs released during bacterial infection. Key findings from EV staining combined with flow cytometry were as follows: (i) LPS-stimulated THP-1 cells generated significantly larger and more numerous large EVs, as compared with those from unstimulated cells; (ii) EVs retained native EV physical properties after staining; and (iii) the new stains selectively differentiated intact large EVs from artificial liposomes, which are models of cell membrane fragments or other lipid-containing debris, as well as distinguished two distinct subpopulations of monocytic EVs within the same experiment, as a result of biochemical differences between unstimulated and LPS-stimulated monocytes. Comparatively, the staining patterns of A549 epithelial lung carcinoma-derived EVs closely resembled those of THP-1 cell line-derived EVs, which highlighted similarities in their selective staining despite their distinct cellular origins. This is consistent with the hypothesis that these new phosphorescent stains target RNA within the EVs.


Asunto(s)
Vesículas Extracelulares , Citometría de Flujo , Monocitos , Humanos , Vesículas Extracelulares/metabolismo , Citometría de Flujo/métodos , Monocitos/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ácidos Nucleicos/metabolismo , Coloración y Etiquetado/métodos , Células THP-1 , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Lipopolisacáridos/farmacología , Línea Celular Tumoral , Células A549
2.
Chem Soc Rev ; 53(13): 6779-6829, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38828885

RESUMEN

This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.


Asunto(s)
Vesículas Extracelulares , Colorantes Fluorescentes , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Colorantes Fluorescentes/química , Trazadores Radiactivos , Imagen por Resonancia Magnética/métodos , Animales , Medios de Contraste/química , Medios de Contraste/metabolismo
3.
Trends Parasitol ; 40(1): 28-44, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38065791

RESUMEN

Cerebral malaria (CM) is a severe neurological complication caused by Plasmodium falciparum parasites; it is characterized by the sequestration of infected red blood cells within the cerebral microvasculature. New findings, combined with a better understanding of the central nervous system (CNS) barriers, have provided greater insight into the players and events involved in CM, including site-specific T cell responses in the human brain. Here, we review the updated roles of innate and adaptive immune responses in CM, with a focus on the role of the perivascular macrophage-endothelium unit in antigen presentation, in the vascular and perivascular compartments. We suggest that these events may be pivotal in the development of CM.


Asunto(s)
Malaria Cerebral , Humanos , Encéfalo , Plasmodium falciparum/fisiología , Interacciones Huésped-Parásitos , Eritrocitos/parasitología
4.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894934

RESUMEN

Dysbiosis, generally defined as the disruption to gut microbiota composition or function, is observed in most diseases, including allergies, cancer, metabolic diseases, neurological disorders and diseases associated with autoimmunity. Dysbiosis is commonly associated with reduced levels of beneficial gut microbiota-derived metabolites such as short-chain fatty acids (SCFA) and indoles. Supplementation with these beneficial metabolites, or interventions to increase their microbial production, has been shown to ameliorate a variety of inflammatory diseases. Conversely, the production of gut 'dysbiotic' metabolites or by-products by the gut microbiota may contribute to disease development. This review summarizes the various 'dysbiotic' gut-derived products observed in cardiovascular diseases, cancer, inflammatory bowel disease, metabolic diseases including non-alcoholic steatohepatitis and autoimmune disorders such as multiple sclerosis. The increased production of dysbiotic gut microbial products, including trimethylamine, hydrogen sulphide, products of amino acid metabolism such as p-Cresyl sulphate and phenylacetic acid, and secondary bile acids such as deoxycholic acid, is commonly observed across multiple diseases. The simultaneous increased production of dysbiotic metabolites with the impaired production of beneficial metabolites, commonly associated with a modern lifestyle, may partially explain the high prevalence of inflammatory diseases in western countries.


Asunto(s)
Enfermedades Autoinmunes , Microbioma Gastrointestinal , Enfermedades Metabólicas , Neoplasias , Enfermedades no Transmisibles , Humanos , Disbiosis/complicaciones , Enfermedades Autoinmunes/complicaciones , Neoplasias/complicaciones , Enfermedades Metabólicas/complicaciones
5.
Mem Inst Oswaldo Cruz ; 118: e230033, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37403869

RESUMEN

BACKGROUND: Cerebral malaria (CM) is a severe immunovasculopathy caused for Plasmodium falciparum infection, which is characterised by the sequestration of parasitised red blood cells (pRBCs) in brain microvessels. Previous studies have shown that some terpenes, such as perillyl alcohol (POH), exhibit a marked efficacy in preventing cerebrovascular inflammation, breakdown of the brain-blood barrier (BBB) and brain leucocyte accumulation in experimental CM models. OBJECTIVE: To analyse the effects of POH on the endothelium using human brain endothelial cell (HBEC) monolayers co-cultured with pRBCs. METHODOLOGY: The loss of tight junction proteins (TJPs) and features of endothelial activation, such as ICAM-1 and VCAM-1 expression were evaluated by quantitative immunofluorescence. Microvesicle (MV) release by HBEC upon stimulation by P. falciparum was evaluated by flow cytometry. Finally, the capacity of POH to revert P. falciparum-induced HBEC monolayer permeability was examined by monitoring trans-endothelial electrical resistance (TEER). FINDINGS: POH significantly prevented pRBCs-induced endothelial adhesion molecule (ICAM-1, VCAM-1) upregulation and MV release by HBEC, improved their trans-endothelial resistance, and restored their distribution of TJPs such as VE-cadherin, Occludin, and JAM-A. CONCLUSIONS: POH is a potent monoterpene that is efficient in preventing P. falciparum-pRBCs-induced changes in HBEC, namely their activation, increased permeability and alterations of integrity, all parameters of relevance to CM pathogenesis.


Asunto(s)
Malaria Cerebral , Malaria Falciparum , Humanos , Plasmodium falciparum , Molécula 1 de Adhesión Intercelular/metabolismo , Células Endoteliales , Molécula 1 de Adhesión Celular Vascular/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Malaria Cerebral/metabolismo , Malaria Cerebral/patología , Monoterpenos/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Endotelio Vascular , Permeabilidad
6.
Cancers (Basel) ; 15(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37190292

RESUMEN

Pleural mesothelioma, previously known as malignant pleural mesothelioma, is an aggressive and fatal cancer of the pleura, with one of the poorest survival rates. Pleural mesothelioma is in urgent clinical need for biomarkers to aid early diagnosis, improve prognostication, and stratify patients for treatment. Extracellular vesicles (EVs) have great potential as biomarkers; however, there are limited studies to date on their role in pleural mesothelioma. We conducted a comprehensive proteomic analysis on different EV populations derived from five pleural mesothelioma cell lines and an immortalized control cell line. We characterized three subtypes of EVs (10 K, 18 K, and 100 K), and identified a total of 4054 unique proteins. Major differences were found in the cargo between the three EV subtypes. We show that 10 K EVs were enriched in mitochondrial components and metabolic processes, while 18 K and 100 K EVs were enriched in endoplasmic reticulum stress. We found 46 new cancer-associated proteins for pleural mesothelioma, and the presence of mesothelin and PD-L1/PD-L2 enriched in 100 K and 10 K EV, respectively. We demonstrate that different EV populations derived from pleural mesothelioma cells have unique cancer-specific proteomes and carry oncogenic cargo, which could offer a novel means to extract biomarkers of interest for pleural mesothelioma from liquid biopsies.

7.
Chem Commun (Camb) ; 59(45): 6877-6880, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37195631

RESUMEN

A new photoluminescent polypyridylruthenium(II) stain for extracellular vesicles (EVs) released from lipopolysaccharide-stimulated THP-1 monocytes enabled important new insights into how the bacteria-induced immune system affects the blood-brain barrier (BBB). These included previously unknown aspects of EV interactions with BBB microvascular endothelial cells and the extracellular matrix relevant to human brain diseases.


Asunto(s)
Células Endoteliales , Vesículas Extracelulares , Humanos , Endotelio , Encéfalo , Barrera Hematoencefálica
8.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37047460

RESUMEN

Multiple sclerosis (MS) is a disease in which the immune system damages components of the central nervous system (CNS), leading to the destruction of myelin and the formation of demyelinating plaques. This often occurs in episodic "attacks" precipitated by the transmigration of leukocytes across the blood-brain barrier (BBB), and repeated episodes of demyelination lead to substantial losses of axons within and removed from plaques, ultimately leading to progressive neurological dysfunction. Within leukocyte populations, macrophages and T and B lymphocytes are the predominant effectors. Among current immunotherapies, oral cladribine's impact on lymphocytes is well characterised, but little is known about its impact on other leukocytes such as monocytes and dendritic cells (DCs). The aim of this study was to determine the transmigratory ability of monocyte and DC subsets in healthy subjects and untreated and cladribine-treated relapse-remitting MS (RRMS) patients using a well-characterised model of the BBB. Peripheral blood mononuclear cells from subjects were added to an in vitro transmigration assay to assess cell migration. Our findings show that while prior treatment with oral cladribine inhibits the migration of intermediate monocytes, it has no impact on the transmigration of DC subsets. Overall, our data indicate a previously unrecognised role of cladribine on intermediate monocytes, known to accumulate in the brain active MS lesions.


Asunto(s)
Monocitos , Esclerosis Múltiple , Humanos , Cladribina/farmacología , Cladribina/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Barrera Hematoencefálica , Leucocitos Mononucleares
9.
Curr Opin Microbiol ; 71: 102228, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36395572

RESUMEN

Host-directed therapies (HDT) are rapidly advancing as a new and clinically relevant strategy to treat infectious disease. The application of HDT can be broadly used to (i) inhibit host factors essential for pathogen development, including host protein kinases, (ii) control detrimental immune signalling, resulting from excessive release of cytokines, chemokines and extracellular vesicles and (iii) strengthen host defence mechanisms, such as tight junctions in the endothelium. For malaria and other eukaryotic parasite-causing diseases, HDTs could provide a novel avenue to combat the growing resistance seen across all antimicrobials and provide protection against the severe forms of disease through modulation of the host immune response.


Asunto(s)
Antiinfecciosos , Malaria , Humanos , Antiinfecciosos/farmacología , Malaria/tratamiento farmacológico , Transducción de Señal
10.
Mem. Inst. Oswaldo Cruz ; 118: e230033, 2023. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1448703

RESUMEN

BACKGROUND Cerebral malaria (CM) is a severe immunovasculopathy caused for Plasmodium falciparum infection, which is characterised by the sequestration of parasitised red blood cells (pRBCs) in brain microvessels. Previous studies have shown that some terpenes, such as perillyl alcohol (POH), exhibit a marked efficacy in preventing cerebrovascular inflammation, breakdown of the brain-blood barrier (BBB) and brain leucocyte accumulation in experimental CM models. OBJECTIVE To analyse the effects of POH on the endothelium using human brain endothelial cell (HBEC) monolayers co-cultured with pRBCs. METHODOLOGY The loss of tight junction proteins (TJPs) and features of endothelial activation, such as ICAM-1 and VCAM-1 expression were evaluated by quantitative immunofluorescence. Microvesicle (MV) release by HBEC upon stimulation by P. falciparum was evaluated by flow cytometry. Finally, the capacity of POH to revert P. falciparum-induced HBEC monolayer permeability was examined by monitoring trans-endothelial electrical resistance (TEER). FINDINGS POH significantly prevented pRBCs-induced endothelial adhesion molecule (ICAM-1, VCAM-1) upregulation and MV release by HBEC, improved their trans-endothelial resistance, and restored their distribution of TJPs such as VE-cadherin, Occludin, and JAM-A. CONCLUSIONS POH is a potent monoterpene that is efficient in preventing P. falciparum-pRBCs-induced changes in HBEC, namely their activation, increased permeability and alterations of integrity, all parameters of relevance to CM pathogenesis.

11.
Clin Transl Immunology ; 11(12): e1426, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36578284

RESUMEN

Objectives: The role of innate lymphoid cells (ILC), particularly helper ILC, in the pathogenesis of multiple sclerosis (MS) is not well understood. Here, we present a comprehensive analysis of peripheral ILC subsets in MS patients prior and after alemtuzumab administration using mass cytometry. Methods: Circulating ILC were analysed by mass cytometry in MS patients before and after alemtuzumab. These were compared with non-MS controls. MS-related shifts among ILC immunophenotypes were further elucidated by fast interpolation-based t-SNE (Flt-SNE) dimensionality reduction. Results: Neither natural killer (NK) cells nor helper ILC (ILC1, ILC2 and ILC3) levels were altered following alemtuzumab treatment. However, CD56bright NK cell expansions were observed in relapsing patients. MS patients prior to alemtuzumab further displayed proportional shifts from ILC1 to ILC2, with MS-associated decreases in CCR6+ helper ILC proportions. Conclusion: CD56bright NK cells during relapse indicate an immediate response to disease reactivation, while CCR6-related shifts among helper ILC suggest altered ILC migration to the CNS during MS.

12.
J Clin Med ; 11(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36362494

RESUMEN

The breakdown of the blood-brain barrier (BBB) and the trans-endothelial migration of lymphocytes are central events in the development of multiple sclerosis (MS). Autoreactive T cells are major players in MS pathogenesis, which are rapidly depleted following alemtuzumab treatment. This modulation, in turn, inhibits CNS inflammation, but alemtuzumab's effect on T cell migration into the CNS has been less studied. Human brain endothelial cells were stimulated with pro-inflammatory cytokines to mimic an inflamed BBB in vitro. Peripheral blood mononuclear cells from healthy controls, untreated or alemtuzumab-treated patients with relapsing-remitting MS (RRMS) were added to the BBB model to assess their transmigratory capacity. Here, the migration of CD4+ effector memory T (TEM) and CD8+ central memory T (TCM) cells across the BBB was impaired in alemtuzumab-treated patients. Naïve T (Tnaïve) cells were unable to migrate across all groups. CD38 was lowly expressed on CD8+ TCM cells, particularly for RRMS patients, compared to CD8+ Tnaïve cells. CD62L expression was lower on CD4+ TEM cells than CD4+ Tnaïve cells and decreased further in alemtuzumab-treated patients. These data suggest that repopulated memory T cells are phenotypically different from naïve T cells, which may affect their transmigration across the BBB in vitro.

13.
J Extracell Vesicles ; 11(10): e12260, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36239734

RESUMEN

Extracellular vesicles (EVs) are lipid-membrane enclosed nanoparticles that play significant roles in health and disease. EVs are abundant in body fluids and carry an array of molecules (proteins, lipids, nucleic acids and glycans) that reflect the identity and activity of their cell-of-origin. While the advent of high throughput omics technologies has allowed in-depth characterisation of EV compositions, how these molecular species are spatially distributed within EV structures is not well appreciated. This is particularly true of the EV surface where a plethora of molecules are reported to be both integral and peripherally associated to the EV membrane. This coronal layer or 'atmosphere' that surrounds the EV membrane contributes to a large, highly interactive and dynamic surface area that is responsible for facilitating EV interactions with the extracellular environment. The EV coronal layer harbours surface molecules that reflect the identity of parent cells, which is likely a highly valuable property in the context of diagnostic liquid biopsies. In this review, we describe the current understanding of the mechanical, electrostatic and molecular properties of the EV surface that offer significant biomarker potential and contribute to a highly dynamic interactome.


Asunto(s)
Vesículas Extracelulares , Ácidos Nucleicos , Biomarcadores/análisis , Vesículas Extracelulares/química , Lípidos/análisis , Biología Molecular , Ácidos Nucleicos/análisis
14.
J Clin Med ; 11(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36294327

RESUMEN

Multiple sclerosis (MS) is a chronic, demyelinating disease of the central nervous system (CNS) induced by immune dysregulation. Cladribine has been championed for its clinical efficacy with relatively minor side effects in treating MS. Although it is proposed that cladribine exerts an anti-migratory effect on lymphocytes at the blood-brain barrier (BBB) in addition to its lymphocyte-depleting and modulating effects, this has not been properly studied. Here, we aimed to determine if cladribine treatment influences trans-endothelial migration of T cell subsets across an inflamed BBB. Human brain endothelial cells stimulated with pro-inflammatory cytokines were used to mimic the BBB. Peripheral blood mononuclear cells were obtained from healthy controls, untreated and cladribine-treated MS patients. The trans-endothelial migration of CD4+ effector memory T (TEM) and CD8+ central memory T (TCM) cells was reduced in cladribine-treated MS patients. CD28 expression was decreased on both CD4+ TEM and CD8+ TCM cells, suggesting lowered peripheral activation of these cells thereby maintaining the integrity of the BBB. In addition, these cells have likely reconstituted following cladribine treatment, revealing a long-term anti-migratory effect. These results highlight new mechanisms by which cladribine acts to control MS pathogenesis.

15.
Nat Commun ; 13(1): 4336, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896537

RESUMEN

Secretory IgA is a key mucosal component ensuring host-microbiota mutualism. Here we use nutritional geometry modelling in mice fed 10 different macronutrient-defined, isocaloric diets, and identify dietary protein as the major driver of secretory IgA production. Protein-driven secretory IgA induction is not mediated by T-cell-dependent pathways or changes in gut microbiota composition. Instead, the microbiota of high protein fed mice produces significantly higher quantities of extracellular vesicles, compared to those of mice fed high-carbohydrate or high-fat diets. These extracellular vesicles activate Toll-like receptor 4 to increase the epithelial expression of IgA-inducing cytokine, APRIL, B cell chemokine, CCL28, and the IgA transporter, PIGR. We show that succinate, produced in high concentrations by microbiota of high protein fed animals, increases generation of reactive oxygen species by bacteria, which in turn promotes extracellular vesicles production. Here we establish a link between dietary macronutrient composition, gut microbial extracellular vesicles release and host secretory IgA response.


Asunto(s)
Vesículas Extracelulares , Microbioma Gastrointestinal , Animales , Proteínas en la Dieta , Vesículas Extracelulares/metabolismo , Inmunoglobulina A Secretora/metabolismo , Ratones , Linfocitos T/metabolismo
16.
Methods Mol Biol ; 2470: 505-514, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35881370

RESUMEN

The methods presented in this chapter describe how to perform ex vivo clumping and in vitro bridging assays in the context of cerebral malaria. Both the protocols are detailed, and emphasis is made on how to prepare platelet suspensions suitable to each technique, including description of specific buffers and reagents to minimize the risk of aggregation while maintaining the platelet properties.


Asunto(s)
Malaria Cerebral , Malaria Falciparum , Adhesión Celular , Células Endoteliales , Eritrocitos , Humanos , Plasmodium falciparum
17.
Immunol Cell Biol ; 100(6): 453-467, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35416319

RESUMEN

B cells play a major role in multiple sclerosis (MS), with many successful therapeutics capable of removing them from circulation. One such therapy, alemtuzumab, is thought to reset the immune system without the need for ongoing therapy in a proportion of patients. The exact cells contributing to disease pathogenesis and quiescence remain to be identified. We utilized mass cytometry to analyze B cells from the blood of patients with relapse-remitting MS (RRMS) before and after alemtuzumab treatment, and during relapse. A complementary RRMS cohort was analyzed by single-cell RNA sequencing. The R package "Spectre" was used to analyze these data, incorporating FlowSOM clustering, sparse partial least squares-discriminant analysis and permutational multivariate analysis of variance. Immunoglobulin (Ig)A+ and IgG1 + B-cell numbers were altered, including higher IgG1 + B cells during relapse. B-cell linker protein (BLNK), CD40 and CD210 expression by B cells was lower in patients with RRMS compared with non-MS controls, with similar results at the transcriptomic level. Finally, alemtuzumab restored BLNK, CD40 and CD210 expression by IgA+ and IgG1 + B cells, which was altered again during relapse. These data suggest that impairment of IgA+ and IgG1 + B cells may contribute to MS pathogenesis, which can be restored by alemtuzumab.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Alemtuzumab/uso terapéutico , Enfermedad Crónica , Humanos , Inmunoglobulina A , Inmunoglobulina G , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Recurrencia
18.
Front Immunol ; 13: 812317, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250986

RESUMEN

Multiple sclerosis (MS) is an immune-mediated inflammatory disease of the central nervous system that results in demyelination of axons, inefficient signal transmission and reduced muscular mobility. Recent findings suggest that B cells play a significant role in disease development and pathology. To further explore this, B cell profiles in peripheral blood from 28 treatment-naive patients with early MS were assessed using flow cytometry and compared to 17 healthy controls. Conventional and algorithm-based analysis revealed a significant increase in MS patients of IgA+ memory B cells (MBC) including CD27+, CD27- and Tbet+ subsets. Screening circulating B cells for markers associated with B cell function revealed a significantly decreased expression of the B cell activation factor receptor (BAFF-R) in MS patients compared to controls. In healthy controls, BAFF-R expression was inversely associated with abundance of differentiated MBC but this was not observed in MS. Instead in MS patients, decreased BAFF-R expression correlated with increased production of proinflammatory TNF following B cell stimulation. Finally, we demonstrated that reactivation of Epstein Barr Virus (EBV) in MS patients was associated with several phenotypic changes amongst MBCs, particularly increased expression of HLA-DR molecules and markers of a T-bet+ differentiation pathway in IgM+ MBCs. Together, these data suggest that the B cell compartment is dysregulated in MS regarding aberrant MBC homeostasis, driven by reduced BAFF-R expression and EBV reactivation. This study adds further insights into the contribution of B cells to the pathological mechanisms of MS, as well as the complex role of BAFF/BAFF-R signalling in MS.


Asunto(s)
Receptor del Factor Activador de Células B , Infecciones por Virus de Epstein-Barr , Células B de Memoria , Esclerosis Múltiple , Receptor del Factor Activador de Células B/genética , Receptor del Factor Activador de Células B/metabolismo , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/inmunología , Herpesvirus Humano 4 , Humanos , Inmunoglobulina A , Inmunoglobulina M , Células B de Memoria/metabolismo , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo
19.
Crit Rev Oncol Hematol ; 171: 103603, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35066154

RESUMEN

Extracellular vesicles (EV) are membrane-enclosed structures of varying size released from all cells and contain a variety of cargo including proteins, lipids, and nucleic acids. They are postulated to play a pivotal role in cancer metastasis through delivery of oncogenic material to neighbouring and distant cells to promote development of a metastatic niche and tumour seeding. Here we reviewed protein data in relevant literature to determine whether specific proteins known to be involved in metastasis can be reliably identified in lung cancer EV, whether these proteins are important in all or specific lung cancers, and whether results from in-vitro cell studies are supported by research examining EV in human biofluids. Our analysis suggests that specific proteins may be more important for individual lung cancers, but interpretation of the literature is currently limited by a relative lack of research investigating EV proteins in some cancers and in clinical studies using biofluids.


Asunto(s)
Exosomas , Vesículas Extracelulares , Neoplasias Pulmonares , Comunicación Celular , Exosomas/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Humanos , Neoplasias Pulmonares/patología , Oncogenes , Proteínas/análisis , Proteínas/metabolismo
20.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36613941

RESUMEN

Cerebral malaria (CM), a fatal complication of Plasmodium infection that affects children, especially under the age of five, in sub-Saharan Africa and adults in South-East Asia, results from incompletely understood pathogenetic mechanisms. Increased release of circulating miRNA, proteins, lipids and extracellular vesicles has been found in CM patients and experimental mouse models. We compared lipid profiles derived from the plasma of CBA mice infected with Plasmodium berghei ANKA (PbA), which causes CM, to those from Plasmodium yoelii (Py), which does not. We previously showed that platelet-free plasma (18k fractions enriched from plasma) contains a high number of extracellular vesicles (EVs). Here, we found that this fraction produced at the time of CM differed dramatically from those of non-CM mice, despite identical levels of parasitaemia. Using high-resolution liquid chromatography-mass spectrometry (LCMS), we identified over 300 lipid species within 12 lipid classes. We identified 45 and 75 lipid species, mostly including glycerolipids and phospholipids, with significantly altered concentrations in PbA-infected mice compared to Py-infected and uninfected mice, respectively. Total lysophosphatidylethanolamine (LPE) levels were significantly lower in PbA infection compared to Py infection and controls. These results suggest that experimental CM could be characterised by specific changes in the lipid composition of the 18k fraction containing circulating EVs and can be considered an appropriate model to study the role of lipids in the pathophysiology of CM.


Asunto(s)
Malaria Cerebral , Plasmodium yoelii , Ratones , Animales , Lipidómica , Ratones Endogámicos CBA , Plasmodium berghei , Lípidos , Ratones Endogámicos C57BL , Encéfalo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...