Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202401393, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023398

RESUMEN

The macrocyclic tumonolide (1) with enamide functionality and the linear tumonolide aldehyde (2) are new interconverting natural products from a marine cyanobacterium with a peptide-polyketide skeleton, representing a hybrid of apratoxins and palmyrolides or laingolides. The planar structures were established by NMR and mass spectrometry. The relative configuration of the stereogenically-rich apratoxin-like polyketide portion was determined using J-based configuration analysis. The absolute configuration of tumonolide (1) was determined by chiral analysis of the amino acid units and computational methods, followed by NMR chemical shift and ECD spectrum prediction, indicating all-R configuration for the polyketide portion, as in palmyrolide A and contrary to the all-S configuration in apratoxins. Functional screening against a panel of 168 GPCR targets revealed tumonolide (1) as a selective antagonist of TACR2 with an IC50 of 7.0 µM, closely correlating with binding affinity. Molecular docking studies established the binding mode and rationalized the selectivity for TACR2 over TACR1 and TACR3. RNA sequencing upon treatment of HCT116 colorectal cancer cells demonstrated activation of the pulmonary fibrosis idiopathic signaling pathway and the insulin secretion signaling pathway at 20 µM, indicating its potential to modulate these pathways.

2.
Phytother Res ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38923111

RESUMEN

Colorectal cancer (CRC) is one of the most common malignant tumours worldwide. Diarylheptanoids, secondary metabolites isolated from Zostera marina, are of interest in natural products research due to their biological activities. Zosterabisphenone B (ZBP B) has recently been shown to inhibit the viability of CRC cells. The aim of this study was to investigate the therapeutic potential of ZBP B for targeting human CRC cells. Cell viability was determined using the MTT assay. Flow cytometry and Western blot analyses were used to assess apoptosis and autophagy. A CRC xenograft model was used to evaluate the in vivo effect of ZBP B. No cytotoxic effect on HCEC cells was observed in the in vitro experiments. ZBP B caused morphological changes in HCT116 colon cancer cells due to an increase in early and late apoptotic cell populations. Mechanistically, ZBP B led to an increase in cleaved caspase-3, caspase-8, caspase-9, PARP and BID proteins and a decrease in Bcl-2 and c-Myc proteins. In the xenograft model of CRC, ZBP B led to a reduction in tumour growth. These results indicate that ZBP B exerts a selective cytotoxic effect on CRC cells by affecting apoptotic signalling pathways and reducing tumour growth in mice. Taken together, our results suggest that ZBP B could be a lead compound for the synthesis and development of CRC drugs.

3.
Environ Sci Technol ; 58(22): 9525-9535, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38758591

RESUMEN

While the ecological role that Trichodesmium sp. play in nitrogen fixation has been widely studied, little information is available on potential specialized metabolites that are associated with blooms and standing stock Trichodesmium colonies. While a collection of biological material from a T. thiebautii bloom event from North Padre Island, Texas, in 2014 indicated that this species was a prolific producer of chlorinated specialized metabolites, additional spatial and temporal resolution was needed. We have completed these metabolite comparison studies, detailed in the current report, utilizing LC-MS/MS-based molecular networking to visualize and annotate the specialized metabolite composition of these Trichodesmium blooms and colonies in the Gulf of Mexico (GoM) and other waters. Our results showed that T. thiebautii blooms and colonies found in the GoM have a remarkably consistent specialized metabolome. Additionally, we isolated and characterized one new macrocyclic compound from T. thiebautii, trichothilone A (1), which was also detected in three independent cultures of T. erythraeum. Genome mining identified genes predicted to synthesize certain functional groups in the T. thiebautii metabolites. These results provoke intriguing questions of how these specialized metabolites affect Trichodesmium ecophysiology, symbioses with marine invertebrates, and niche development in the global oligotrophic ocean.


Asunto(s)
Trichodesmium , Trichodesmium/metabolismo , Golfo de México , Cianobacterias/metabolismo , Eutrofización , Cromatografía Liquida , Espectrometría de Masas en Tándem
4.
Biology (Basel) ; 12(11)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37997977

RESUMEN

We investigated the effects of dietary delivered self-DNA in the model insect Drosophila melanogaster. Self-DNA administration resulted in low but significant lethality in Drosophila larvae and considerably extended the fly developmental time. This was characterized by the abnormal persistence of the larvae in the L2 and L3 stages, which largely accounted for the average 72 h delay observed in pupariation, as compared to controls. In addition, self-DNA exposure affected adult reproduction by markedly reducing both female fecundity and fertility, further demonstrating its impact on Drosophila developmental processes. The effects on the metabolites of D. melanogaster larvae after exposure to self-DNA were studied by NMR, LC-MS, and molecular networking. The results showed that self-DNA feeding reduces the amounts of all metabolites, particularly amino acids and N-acyl amino acids, which are known to act as lipid signal mediators. An increasing amount of phloroglucinol was found after self-DNA exposure and correlated to developmental delay and egg-laying suppression. Pidolate, a known intermediate in the γ-glutamyl cycle, also increased after exposure to self-DNA and correlated to the block of insect oogenesis.

5.
Mar Drugs ; 21(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36827136

RESUMEN

Despite low temperatures, poor nutrient levels and high pressure, microorganisms thrive in deep-sea environments of polar regions. The adaptability to such extreme environments renders deep-sea microorganisms an encouraging source of novel, bioactive secondary metabolites. In this study, we isolated 77 microorganisms collected by a remotely operated vehicle from the seafloor in the Fram Strait, Arctic Ocean (depth of 2454 m). Thirty-two bacteria and six fungal strains that represented the phylogenetic diversity of the isolates were cultured using an One-Strain-Many-Compounds (OSMAC) approach. The crude EtOAc extracts were tested for antimicrobial and anticancer activities. While antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecium was common for many isolates, only two bacteria displayed anticancer activity, and two fungi inhibited the pathogenic yeast Candida albicans. Due to bioactivity against C. albicans and rich chemical diversity based on molecular network-based untargeted metabolomics, Aspergillus versicolor PS108-62 was selected for an in-depth chemical investigation. A chemical work-up of the SPE-fractions of its dichloromethane subextract led to the isolation of a new PKS-NRPS hybrid macrolactone, versicolide A (1), a new quinazoline (-)-isoversicomide A (3), as well as three known compounds, burnettramic acid A (2), cyclopenol (4) and cyclopenin (5). Their structures were elucidated by a combination of HRMS, NMR, [α]D, FT-IR spectroscopy and computational approaches. Due to the low amounts obtained, only compounds 2 and 4 could be tested for bioactivity, with 2 inhibiting the growth of C. albicans (IC50 7.2 µg/mL). These findings highlight, on the one hand, the vast potential of the genus Aspergillus to produce novel chemistry, particularly from underexplored ecological niches such as the Arctic deep sea, and on the other, the importance of untargeted metabolomics for selection of marine extracts for downstream chemical investigations.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Filogenia , Espectroscopía Infrarroja por Transformada de Fourier , Aspergillus , Hongos/metabolismo , Metaboloma , Antibacterianos/metabolismo , Extractos Vegetales/metabolismo
6.
Phytochemistry ; 209: 113611, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36804479

RESUMEN

Salvia hispanica L., commonly named Chia, is a food plant from Central America and Australia, producing seeds whose consumption has been increasing in the last decade. Several articles analysed the seeds metabolite content. However, few is known about Chia leaves. This work is the first report on the whole metabolite profile of chia leaves, determined by spectroscopic methods including NMR, GC-MS and LC-MS coupled with chemometrics analysis. Additionally, molecular networking has been applied to the LC-MS data to determine the flavonoid composition. Different chia sources were compared: one commercial (black) and three early flowering (G3, G8 and G17) mutant genotypes cultivated at two irrigation regimes (50 and 100%). Organic extracts were mainly composed by saturated and mono- and polyunsaturated fatty acids with palmitic being the most abundant followed by oleic and linolenic acids. Aqueous extracts contained glucose, galactose, and fructose as main sugars. Flavonoids were based on vitexin and orientin and their analogues. Chemical composition of early flowering genotypes was quite similar to commercial black chia with the exception of G8 showing significant differences in the polar phase. A generally highest content of omega-9 fatty acids has been found in the early flowering genotypes along with high content of nutraceuticals suggesting them as a potential source of raw materials for the food/feed industry.


Asunto(s)
Salvia hispanica , Salvia , Salvia/genética , Salvia/química , Ácidos Grasos Insaturados , Ácidos Grasos/análisis , Genotipo , Semillas/química
7.
Molecules ; 27(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36558052

RESUMEN

Moringa oleifera is a traditional food crop widespread in Asiatic, African, and South American continents. The plant, able to grow in harsh conditions, shows a high nutritional value and medicinal potential evidencing cardioprotective, anti-inflammatory, antioxidant, and antimicrobial properties. The purpose of this study was the phytochemical analysis of M. oleifera and the identification of the antimicrobial compounds by combining a chemical approach with in vitro tests. The metabolite profile of M. oleifera polar and apolar extracts of leaves and seeds were investigated by using Nuclear Magnetic Resonance spectroscopy and Gas Chromatography-Mass Spectrometry. The antimicrobial activity of all of the obtained extract was evaluated against four bacterial pathogens (Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and Salmonella enterica). The chemical analysis provided a wide set of metabolites that were identified and quantified. Moreover, apolar extracts from seeds showed a significant concentration-dependent antimicrobial activity against S. aureus and S. epidermidis, (4 mg/mL reduced the viability up to 50%) that was associated to the content of specific fatty acids. Our results remarked the advantages of an integrated approach for the identification of plant metabolites and its use in association with biological tests to recognize the compounds responsible for bioactivity without compounds purification.


Asunto(s)
Antiinfecciosos , Moringa oleifera , Moringa oleifera/química , Staphylococcus aureus , Extractos Vegetales/química , Cromatografía de Gases y Espectrometría de Masas , Semillas/química , Hojas de la Planta/química , Antiinfecciosos/farmacología , Antiinfecciosos/análisis
8.
J Nat Prod ; 85(10): 2468-2473, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36261887

RESUMEN

The widespread seagrass Zostera marina contains a new diarylheptanoid heterodimer, zosterabisphenone C (1), featuring an unprecedented rearrangement of one of its benzene rings to a cyclopentenecarbonyl unit. The planar structure and absolute configuration of zosterabisphenone C were elucidated by a combination of spectroscopic (MS, ECD, and low-temperature NMR) and computational (DFT-NMR and DFT-ECD) evidence. Consistent with the previously isolated zosterabisphenones, compound 1 was selectively cytotoxic against HCT 116 adenocarcinoma colon cancer cells, reducing their viability by 73% at 10 µM (IC50 of 7.6 ± 1.1 µM). The biosynthetic origin of zosterabisphenone C (1) from an oxidative rearrangement of zosterabisphenone A (4) is proposed.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Zosteraceae , Diarilheptanoides/farmacología , Benceno
9.
Phytochemistry ; 204: 113453, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36174718

RESUMEN

Extracellular DNA (exDNA) widely occurs in the environment due to release by either cell lysis or active secretion. The role of exDNA in plant-soil interactions has been investigated and inhibitory effects on the growth of conspecific individuals by their self-DNA have been reported. Transcriptome analysis in the model plant Arabidopsis thaliana showed a clear recognition by the plant roots of self- and nonself-exDNA, with inhibition occurring only after exposure to the former. In this study, an untargeted metabolomics approach was used to assess at molecular level the plant reactions to exDNA exposure. Thus, the effects on the metabolites profile of A. thaliana after exposure to self- and nonself-exDNA from plants and fish, were studied by NMR, LC-MS, chemometrics and molecular networking analyses. Results show that self-DNA significantly induces the accumulation of RNA constituents (nucleobases, ribonucleosides, dinucleotide and trinucleotide oligomers). Interestingly, AMP and GMP are found along with their cyclic analogues cAMP and cGMP, and in form of cyclic dimers (c-di-AMP and c-di-GMP). Also methylated adenosine monophosphate (m6AMP) and the dimeric dinucleotide N-methyladenylyl-(3'→5') cytidine (m6ApC) increased only in the self-DNA treatment. Such striking evidence of self-DNA effects highlights a major role of exDNA in plant sensing of its environment.

10.
Plants (Basel) ; 11(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36015467

RESUMEN

Lettuce plants were grown in a greenhouse affected by the fungal pathogen Fusarium oxysporum to test the effects on plant metabolomics by different organic treatments. Three foliar application treatments were applied: a commercial compost tea made of aerobically fermented plant organic matter, a pure lyophilized microalga Artrospira platensis, commonly named spirulina, and the same microalga previously exposed during its culture to a natural uptake from medium enriched with F. oxysporum fragmented DNA (NAT). The experiment is the first attempt to observe in field conditions, the use and effects of a natural microbial library as a carrier of pathogenic fungal DNA for disease control. Untargeted NMR metabolomics and chemometrics showed that foliar organic application significantly reduced fumaric and formic acids, aromatic amino acids, and nucleosides, while increasing ethanolamine. A strong decrease in phenolic acids and an increase in citric acid and glutamine were specifically observed in the NAT treatment. It is noteworthy that the exposure of a known biostimulant microalga to fungal DNA in its culture medium was sufficient to induce detectable changes in the metabolomic profiles of the fertilized plants. These findings deserve further investigation to assess the potential relevance of the presented approach in the field of crop biostimulation and biocontrol of plant pathogens.

11.
Phytochem Anal ; 33(5): 696-709, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35354224

RESUMEN

INTRODUCTION: Arbutus unedo L. (strawberry tree), Ceratonia siliqua L. (carob), Eucalyptus camaldulensis Dehnh. (eucalyptus), Laurus nobilis L. (laurel), Mentha aquatica L. (water mint), Myrtus communis L. (common myrtle), and Rosmarinus officinalis L. (rosemary) are aromatic plants from the Mediterranean region whose parts and preparations are used for their nutritional properties and health benefits. OBJECTIVES: To evaluate and compare the metabolites profile, total phenol content (TPC), and antioxidant activity of plant leaves for their future use. Gas chromatography-mass spectrometry (GC-MS) was used for metabolomics. Data comparison was performed by chemometrics. METHODOLOGY: Polar and apolar extracts were analysed using untargeted GC-MS metabolomics followed by chemometrics (principal component analysis, heatmap correlation and dendrogram) to identify, quantify and compare the major organic compounds in the plants. Additionally, nuclear magnetic resonance (NMR) spectroscopy was used for the laurel polar extract to identify d-gluco-l-glycero-3-octulose whose presence was unclear from the GC-MS data. TPC and antioxidant assays were performed using classical methods (Folin-Ciocalteu, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH)) and correlated to the phytochemical profiles. RESULTS: Forty-three metabolites were identified including amino acids, organic acids, carbohydrates, phenols, polyols, fatty acids, and alkanes. Eight metabolites (d-fructose, d-glucose, d-mannose, gallic acid, quinic acid, myo-inositol, palmitic and stearic acids) were in common between all species. d-Gluco-l-glycero-3-octulose (37.29 ± 1.19%), d-pinitol (31.33 ± 5.12%), and arbutin (1.30 ± 0.44%,) were characteristic compounds of laurel, carob, and strawberry tree, respectively. Carob showed the highest values of TPC and antioxidant activity. CONCLUSION: GC-MS metabolomics and chemometrics analyses are fast and useful methods to determine and compare the metabolomics profiling of aromatic plants of food and industrial interest.


Asunto(s)
Eucalyptus , Fabaceae , Fragaria , Mentha , Myrtus , Rosmarinus , Antioxidantes/química , Quimiometría , Fabaceae/química , Galactanos , Mananos , Metabolómica/métodos , Fenoles , Extractos Vegetales/química , Gomas de Plantas , Árboles
12.
Mar Drugs ; 20(3)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35323509

RESUMEN

Seaweed endophytic (algicolous) fungi are talented producers of bioactive natural products. We have previously isolated two strains of the endophytic fungus, Pyrenochaetopsis sp. FVE-001 and FVE-087, from the thalli of the brown alga Fucus vesiculosus. Initial chemical studies yielded four new decalinoylspirotetramic acid derivatives with antimelanoma activity, namely pyrenosetins A-C (1-3) from Pyrenochaetopsis sp. strain FVE-001, and pyrenosetin D (4) from strain FVE-087. In this study, we applied a comparative metabolomics study employing HRMS/MS based feature-based molecular networking (FB MN) on both Pyrenochaetopsis strains. A higher chemical capacity in production of decalin derivatives was observed in Pyrenochaetopsis sp. FVE-087. Notably, several decalins showed different retention times despite the same MS data and MS/MS fragmentation pattern with the previously isolated pyrenosetins, indicating they may be their stereoisomers. FB MN-based targeted isolation studies coupled with antimelanoma activity testing on the strain FVE-087 afforded two new stereoisomers, pyrenosetins E (5) and F (6). Extensive NMR spectroscopy including DFT computational studies, HR-ESIMS, and Mosher's ester method were used in the structure elucidation of compounds 5 and 6. The 3'R,5'R stereochemistry determined for compound 6 was identical to that previously reported for pyrenosetin C (3), whose stereochemistry was revised as 3'S,5'R in this study. Pyrenosetin E (5) inhibited the growth of human malignant melanoma cells (A-375) with an IC50 value of 40.9 µM, while 6 was inactive. This study points out significant variations in the chemical repertoire of two closely related fungal strains and the versatility of FB MN in identification and targeted isolation of stereoisomers. It also confirms that the little-known fungal genus Pyrenochaetopsis is a prolific source of complex decalinoylspirotetramic acid derivatives.


Asunto(s)
Ascomicetos/metabolismo , Mezclas Complejas/química , Endófitos/metabolismo , Fucus/microbiología , Algas Marinas/microbiología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Mezclas Complejas/farmacología , Humanos , Metabolómica , Estereoisomerismo
13.
Org Lett ; 23(18): 7134-7138, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34491069

RESUMEN

Two diarylheptanoid heterodimers, zosterabisphenones A (1) and B (2), were isolated from the seagrass Zostera marina. They feature unprecedented catechol keto tautomers, stable because of steric constraints. Their structure elucidation was based on extensive low-temperature NMR studies and ECD and MS data, with the essential aid of DFT prediction of NMR and ECD spectra. Zosterabisphenone B (2) was selectively cytotoxic against the adenocarcinoma colon cancer cell line HCT116 with IC50 3.6 ± 1.1 µM at 48 h.


Asunto(s)
Catecoles/química , Diarilheptanoides/química , Zosteraceae/química , Isomerismo , Espectroscopía de Resonancia Magnética , Estructura Molecular
14.
Planta Med ; 87(12-13): 1018-1024, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33906246

RESUMEN

Euphorbia myrsinites is one of the oldest spurges described and used in folk medicine. It is characterized by blue-grey stems similar to myrtle, and it is spread in the Mediterranean region, Asia, and the USA. Chemical analysis of E. myrsinites collected in Turkey afforded the isolation of 4 diterpenes based on the so-called myrsinane skeleton being tetraesters of the tetracyclic diterpene alcohol myrsinol. In this study, the phytochemical analysis of this species collected in Italy has been undertaken to afford the isolation of a new atisane diterpene, named myrsatisane, 3 ingenol derivatives, along with the 4 tetraester derivatives previously found. A triterpene compound based on the euphane skeleton has also been isolated. Structural elucidation of the new myrsatisane was based on spectroscopic techniques, including HR-MS and 1- and 2-dimensional NMR experiments. Its relative configuration was determined by NOE correlations, while absolute stereochemistry was obtained by quantum-mechanical DFT studies. While diterpenes with the atisane skeleton are relatively common in Euphorbia species, this is the first report of an atisane diterpene from E. myrsinites. All the isolated terpenes were tested for anti-inflammatory activity on J774A.1 macrophages stimulated with lipopolysaccharide by evaluation of nitrite and pro-inflammatory cytokine Il-1ß levels. Among tested compounds, the 3 ingenol diterpenes exhibited a dose-dependent (0.001 - 3 µM) significant activity, thus showing their potential as anti-inflammatory drug candidates.


Asunto(s)
Diterpenos , Euphorbia , Triterpenos , Antiinflamatorios/farmacología , Diterpenos/farmacología , Estructura Molecular , Terpenos
15.
J Sci Food Agric ; 101(14): 6010-6019, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33855720

RESUMEN

BACKGROUND: Chia (Salvia hispanica L.) is a functional food from Central America. Interest in it is growing rapidly due to the many health benefits from the seed. However, when chia is grown at high latitudes, seed yield may be low whereas a high stem biomass and immature inflorescences are produced. Little is known about the chemical composition and the properties of stems and flowers. In this work, the metabolite profile, the antioxidant activity, and the total polyphenol content of stems and inflorescences were evaluated in a factorial experiment with different chia populations (commercial black chia and long-day flowering mutants G3, G8, and G17) and irrigation (100% and 50% of evapotranspiration). RESULTS: The results show the influence of irrigation and seed source on the antioxidant activity and total polyphenol content of chia flower and stem. Inflorescences exhibit higher antioxidant activity, suggesting their potential use as natural antioxidant. The mutants G3 and G8, at 50% irrigation, contained the highest amounts of compounds with nutraceutical value, especially within the flower. The mutant G17 showed lower antioxidant activity and polyphenol content compared to other seed sources but exhibited high omega 3 content in flowers but low in stems. This indicates that chia varieties should be chosen according to the objective of cultivation. CONCLUSION: These findings, indicating a close relation of metabolite content with irrigation and seed source, may provide the basis for the use of chia flower and stem for their nutraceutical value in the food, feed, and supplement industries. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Antioxidantes/química , Extractos Vegetales/química , Salvia/crecimiento & desarrollo , Salvia/metabolismo , Riego Agrícola , Antioxidantes/metabolismo , América Central , Suplementos Dietéticos/análisis , Flores/química , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Metabolómica , Mutación , Extractos Vegetales/metabolismo , Tallos de la Planta/química , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Salvia/química , Salvia/genética , Agua/análisis , Agua/metabolismo
16.
Mar Drugs ; 19(1)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477773

RESUMEN

Brown alga Bifurcaria bifurcata is an extraordinarily rich source of linear (acylic) diterpenes with enormous structural diversity. As part of our interest into secondary metabolites of the Irish seaweeds, here we report four new acyclic diterpenes (1-4) and seven known terpenoids (5-11) from the CHCl3 extract of B. bifurcata. The planar structures of the new metabolites were elucidated by means of 1D and 2D NMR, HRMS, and FT-IR spectroscopy. Since linear diterpenes are highly flexible compounds, the assignment of their stereochemistry by conventional methods, e.g., NOESY NMR, is difficult. Therefore, we employed extensive quantum-mechanical prediction of NMR chemical shifts and optical rotation analyses to identify the relative and absolute configurations of the new compounds 1-4. Several compounds moderately inhibited the human breast cancer cell line (MDA-MB-231) with IC50 values ranging from 10.0 to 33.5 µg/mL. This study not only demonstrates the vast capacity of the Irish B. bifurcata to produce highly oxygenated linear diterpenoids, but also highlights the potential of new methodologies for assignment of their stereogenic centers.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Diterpenos/aislamiento & purificación , Phaeophyceae/metabolismo , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Teoría Funcional de la Densidad , Diterpenos/química , Diterpenos/farmacología , Femenino , Humanos , Concentración 50 Inhibidora , Irlanda , Metabolismo Secundario , Terpenos/química , Terpenos/aislamiento & purificación
17.
J Fungi (Basel) ; 6(2)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531985

RESUMEN

A diketopiperazine has been purified from a culture filtrate of the endophytic fungus Paraphaeosphaeria sporulosa, isolated from healthy tissues of strawberry plants in a survey of microbes as sources of anti-bacterial metabolites. Its structure has been determined by nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LC-MS) analyses and was found to be identical to cyclo(L-Pro-L-Phe) purified from species of other fungal genera. This secondary metabolite has been selected following bioguided-assay fractionation against two strains of Salmonella enterica, the causal agent of bovine gastroenteritis. The diketopiperazine cyclo(L-Pro-L-Phe), isolated for the first time from Paraphaeosphaeria species, showed minimum inhibitory concentration (MIC) values of 71.3 and 78.6 µg/mL against the two S. enterica strains. This finding may be significant in limiting the use of synthetic antibiotics in animal husbandry and reducing the emergence of bacterial multidrug resistance. Further in vivo experiments of P. sporulosa diketopiperazines are important for the future application of these metabolites.

18.
Mar Drugs ; 18(6)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466545

RESUMEN

The fungal genus Pyrenochaetopsis is commonly found in soil, terrestrial, and marine environments, however, has received little attention as a source of bioactive secondary metabolites so far. In a recent work, we reported the isolation and characterization of three new anticancer decalinoyltetramic acid derivatives, pyrenosetins A-C, from the Baltic Fucus vesiculosus-derived endophytic fungus Pyrenochaetopsis sp. FVE-001. Herein we report a new pentacyclic decalinoylspirotetramic acid derivative, pyrenosetin D (1), along with two known decalin derivatives wakodecalines A (2) and B (3) from another endophytic strain Pyrenochaetopsis FVE-087 isolated from the same seaweed and showed anticancer activity in initial screenings. The chemical structures of the purified compounds were elucidated by comprehensive analysis of HR-ESIMS, FT-IR, [a]D, 1D and 2D NMR data coupled with DFT calculations of NMR parameters and optical rotation. Compounds 1-3 were evaluated for their anticancer and toxic potentials against the human malignant melanoma cell line (A-375) and the non-cancerous keratinocyte cell line (HaCaT). Pyrenosetin D (1) showed toxicity towards both A-375 and HaCaT cells with IC50 values of 77.5 and 39.3 µM, respectively, while 2 and 3 were inactive. This is the third chemical study performed on the fungal genus Pyrenochaetopsis and the first report of a pentacyclic decalin ring system from the fungal genus Pyrenochaetopsis.


Asunto(s)
Antineoplásicos/farmacología , Fucus/química , Organismos Acuáticos , Línea Celular Tumoral/efectos de los fármacos , Humanos , Espectroscopía de Resonancia Magnética , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad
19.
Org Lett ; 22(1): 78-82, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31834807

RESUMEN

Zosteraphenols, two new tetracyclic diarylheptanoids were isolated from the seagrass Zostera marina. The rotameric equilibrium of the strained tetracyclic structures, involving a diastereomeric minor rotamer with opposite axial chirality, resulted in coalescent NMR spectra. Although the elusive minor rotamer was only characterized with 1H chemical shifts, the excellent agreement between experimental and DFT-calculated chemical shifts of both rotamers unequivocally supported this analysis. Absolute configuration of zosteraphenols was determined by DFT prediction of their ECD spectra.


Asunto(s)
Teoría Funcional de la Densidad , Diarilheptanoides/química , Diarilheptanoides/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...