Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(17): 19168-19177, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35438957

RESUMEN

The non-covalent biomolecular functionalization of fluorescent single-walled carbon nanotubes (SWCNTs) has resulted in numerous in vitro and in vivo sensing and imaging applications due to many desirable optical properties. In these applications, it is generally presumed that pristine, singly dispersed SWCNTs interact with and enter live cells at the so-called nano-biointerface, for example, the cell membrane. Despite numerous fundamental studies published on this presumption, it is known that nanomaterials have the propensity to aggregate in protein-containing environments before ever contacting the nano-biointerface. Here, using DNA-functionalized SWCNTs with defined degrees of aggregation as well as near-infrared hyperspectral microscopy and toxicological assays, we show that despite equal rates of internalization, initially aggregated SWCNTs do not further accumulate within individual subcellular locations. In addition to subcellular accumulations, SWCNTs initially with a low degree of aggregation can induce significant deleterious effects in various long-term cytotoxicity and real-time proliferation assays, which are markedly different when compared to those of SWCNTs that are initially aggregated. These findings suggest the importance of the aggregation state as a critical component related to intracellular processing and toxicological response of engineered nanomaterials.


Asunto(s)
Nanoestructuras , Nanotubos de Carbono , Nanotubos de Carbono/toxicidad
2.
ACS Nano ; 16(2): 3092-3104, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35049273

RESUMEN

Nanomaterials are the subject of a range of biomedical, commercial, and environmental investigations involving measurements in living cells and tissues. Accurate quantification of nanomaterials, at the tissue, cell, and organelle levels, is often difficult, however, in part due to their inhomogeneity. Here, we propose a method that uses the distinct optical properties of a heterogeneous nanomaterial preparation in order to improve quantification at the single-cell and organelle level. We developed "hyperspectral counting", which employs diffraction-limited imaging via hyperspectral microscopy of a diverse set of fluorescent nanomaterials to estimate particle number counts in live cells and subcellular structures. A mathematical model was developed, and Monte Carlo simulations were employed, to improve the accuracy of these estimates, enabling quantification with single-cell and single-endosome resolution. We applied this nanometrology technique with single-walled carbon nanotubes and identified an upper limit of the rate of uptake into cells─approximately 3,000 nanotubes endocytosed within 30 min. In contrast, conventional region-of-interest counting results in a 230% undercount. The method identified significant heterogeneity and a broad non-Gaussian distribution of carbon nanotube uptake within cells. For example, while a particular cell contained an average of 1 nanotube per endosome, the heterogeneous distribution resulted in over 7 nanotubes localizing within some endosomes, substantially changing the accounting of subcellular nanoparticle concentration distributions. This work presents a method to quantify the cellular and subcellular concentrations of a heterogeneous carbon nanotube reference material, with implications for the nanotoxicology, drug/gene delivery, and nanosensor fields.


Asunto(s)
Nanopartículas , Nanotubos de Carbono , Diagnóstico por Imagen , Endosomas , Nanotubos de Carbono/química
3.
ACS Appl Mater Interfaces ; 13(27): 31986-31995, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34197074

RESUMEN

Single-walled carbon nanotubes (SWCNTs) have been used in a variety of sensing and imaging applications over the past few years due to their unique optical properties. In the solution phase, SWCNTs are employed as near-infrared (NIR) fluorescence-based sensors of target analytes via modulations in emission intensity and/or wavelength. In an effort to lower the limit of detection, research has been conducted into isolating SWCNTs adhered to surfaces for potential single molecule analyte detection. However, it is known that SWCNT fluorescence is adversely affected by the inherently rough surfaces that are conventionally used for their observation (e.g., glass coverslip), potentially interfering with fluorescence-based analyte detection. Here, using a spin-coating method with thin films of alginate and SWCNTs, we demonstrate that a novel hydrogel platform can be created to investigate immobilized individual SWCNTs without significantly perturbing their optical properties as compared to solution-phase values. In contrast to the glass coverslip, which red-shifted DNA-functionalized (6,5)-SWCNTs by an average of 3.4 nm, the hydrogel platform reported emission wavelengths that statistically matched the solution-phase values. Additionally, the heterogeneity in the wavelength measurements, as determined from the width of created histograms, was reduced nearly by a factor of 3 for the SWCNTs in the hydrogel platform when compared to glass coverslips. Using long SWCNTs, i.e., those with an average length above the diffraction limit of our microscope, we show that a glass coverslip can induce optical heterogeneity along the length of a single SWCNT regardless of its surface functionalization. This is again significantly mitigated when examining the long SWCNTs in the hydrogel platform. Finally, we show that upon the addition of a model analyte (calcium chloride), the optical response can be spatially resolved along the length of a single SWCNT, enabling localized analyte detection on the surface of a single nanoscale sensor.

4.
ACS Nano ; 15(7): 12388-12404, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34180232

RESUMEN

Intracellular vesicle trafficking involves a complex series of biological pathways used to sort, recycle, and degrade extracellular components, including engineered nanomaterials (ENMs) which gain cellular entry via active endocytic processes. A recent emphasis on routes of ENM uptake has established key physicochemical properties which direct certain mechanisms, yet relatively few studies have identified their effect on intracellular trafficking processes past entry and initial subcellular localization. Here, we developed and applied an approach where single-walled carbon nanotubes (SWCNTs) play a dual role-that of an ENM undergoing intracellular processing, in addition to functioning as the signal transduction element reporting these events in individual cells with single organelle resolution. We used the exceptional optical properties exhibited by noncovalent hybrids of single-stranded DNA and SWCNTs (DNA-SWCNTs) to report the progression of intracellular processing events via two orthogonal hyperspectral imaging approaches of near-infrared (NIR) fluorescence and resonance Raman scattering. A positive correlation between fluorescence and G-band intensities was uncovered within single cells, while exciton energy transfer and eventual aggregation of DNA-SWCNTs were observed to scale with increasing time after internalization. An analysis pipeline was developed to colocalize and deconvolute the fluorescence and Raman spectra of subcellular regions of interest (ROIs), allowing for single-chirality component spectra to be obtained with submicron spatial resolution. This approach uncovered correlations between DNA-SWCNT concentration, dielectric modulation, and irreversible aggregation within single intracellular vesicles. An immunofluorescence assay was designed to directly observe the DNA-SWCNTs in labeled endosomal vesicles, revealing a distinct relationship between the physical state of organelle-bound DNA-SWCNTs and the dynamic luminal conditions during endosomal maturation processes. Finally, we trained a machine learning algorithm to predict endosome type using the Raman spectra of the vesicle-bound DNA-SWCNTs, enabling major components in the endocytic pathway to be simultaneously visualized using a single intracellular reporter.


Asunto(s)
Nanoestructuras , Nanotubos de Carbono , Nanotubos de Carbono/química , Células Endoteliales , ADN de Cadena Simple , ADN
5.
Nano Lett ; 19(9): 6203-6212, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31424226

RESUMEN

Noncovalent hybrids of single-stranded DNA and single-walled carbon nanotubes (SWCNTs) have demonstrated applications in biomedical imaging and sensing due to their enhanced biocompatibility and photostable, environmentally responsive near-infrared (NIR) fluorescence. The fundamental properties of such DNA-SWCNTs have been studied to determine the correlative relationships between oligonucleotide sequence and length, SWCNT species, and the physical attributes of the resultant hybrids. However, intracellular environments introduce harsh conditions that can change the physical identities of the hybrid nanomaterials, thus altering their intrinsic optical properties. Here, through visible and NIR fluorescence imaging in addition to confocal Raman microscopy, we show that the oligonucleotide length controls the relative uptake, intracellular optical stability, and retention of DNA-SWCNTs in mammalian cells. Although the absolute NIR fluorescence intensity of DNA-SWCNTs in murine macrophages increases with increasing oligonucleotide length (from 12 to 60 nucleotides), we found that shorter oligonucleotide DNA-SWCNTs undergo a greater magnitude of spectral shift and are more rapidly internalized and expelled from the cell after 24 h. Furthermore, by labeling the DNA with a fluorophore that dequenches upon removal from the SWCNT surface, we found that shorter oligonucleotide strands are displaced from the SWCNT within the cell, altering the physical identity and changing the fate of the internalized nanomaterial. Finally, through a pharmacological inhibition study, we identified the mechanism of SWCNT expulsion from the cells as lysosomal exocytosis. These findings provide a fundamental understanding of the interactions between SWCNTs and live cells as well as evidence suggesting the ability to control the biological fate of the nanomaterials merely by varying the type of DNA wrapping.


Asunto(s)
Técnicas Biosensibles/métodos , ADN de Cadena Simple/química , Imagen Molecular/métodos , Nanotubos de Carbono/química , Animales , Fluorescencia , Macrófagos/química , Ratones , Nanoestructuras/química , Oligonucleótidos/química
6.
Sci Rep ; 9(1): 11926, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31417148

RESUMEN

Single-walled carbon nanotubes (SWCNTs) have recently been utilized as fillers that reduce the flammability and enhance the strength and thermal conductivity of material composites. Enhancing the thermal stability of SWCNTs is crucial when these materials are applied to high temperature applications. In many instances, SWCNTs are applied to composites with surface coatings that are toxic to living organisms. Alternatively, single-stranded DNA, a naturally occurring biological polymer, has recently been utilized to form singly-dispersed hybrids with SWCNTs as well as suppress their known toxicological effects. These hybrids have shown unrivaled stabilities in both aqueous suspension or as a dried material. Furthermore, DNA has certain documented flame-retardant effects due to the creation of a protective char upon heating in the presence of oxygen. Herein, using various thermogravimetric analytical techniques, we find that single-stranded DNA has a significant flame-retardant effect on the SWCNTs, and effectively enhances their thermal stability. Hybridization with DNA results in the elevation of the thermal decomposition temperature of purified SWCNTs in excess of 200 °C. We translate this finding to other carbon nanomaterials including multi-walled carbon nanotubes (MWCNTs), reduced graphene oxide (RGO) and fullerene (C60), and show similar effects upon complexation with DNA. The rate of thermal decomposition of the SWCNTs was also explored and found to significantly depend upon the sequence of DNA that was used.


Asunto(s)
Carbono/química , ADN/química , Nanoestructuras/química , Temperatura , Nanoestructuras/ultraestructura , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Espectrometría Raman
7.
ACS Appl Mater Interfaces ; 11(2): 2225-2233, 2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30575397

RESUMEN

Single-walled carbon nanotubes (SWCNTs) functionalized with short single-stranded DNA have been extensively studied within the last decade for biomedical applications due to the high dispersion efficiency and intrinsic biocompatibility of DNA as well as the photostable and tunable fluorescence of SWCNTs. Characterization of their physical properties, particularly their length distribution, is of great importance regarding their application as a bioengineered research tool and clinical diagnostic agent. Conventionally, atomic force microscopy (AFM) has been used to quantify the length of DNA-SWCNTs by depositing the hybrids onto an electrostatically charged flat surface. Here, we demonstrate that hybrids of DNA-SWCNTs with different oligomeric DNA sequences ((GT)6 and (GT)30) differentially deposit on the AFM substrate, resulting in significant inaccuracies in the reported length distributions of the parent solutions. Using a solution-based surfactant exchange technique, we placed both samples into a common surfactant wrapping and found identical SWCNT length distributions upon surface deposition. Additionally, by spin-coating the surfactant-wrapped SWCNTs onto a substrate, thus mitigating effects of electrostatic interactions, we found length distributions that did not depend on DNA sequence but were significantly longer than electrostatic deposition methods, illuminating the inherent bias of the surface deposition method. Quantifying the coverage of DNA molecules on each SWCNT through both absorbance spectroscopy and direct observation, we found that the density of DNA per SWCNT was significantly higher in short (GT)6-SWCNTs (length < 100 nm) compared to long (GT)6-SWCNTs (length > 100 nm). In contrast, we found no dependence of the DNA density on SWCNT length in (GT)30-SWCNT hybrids. Thus, we attribute differences in the observed length distributions of DNA-SWCNTs to variations in electrostatic repulsion induced by sequence-dependent DNA density.


Asunto(s)
Secuencia de Bases , ADN de Cadena Simple/química , Nanotubos de Carbono/química , ADN de Cadena Simple/ultraestructura , Microscopía de Fuerza Atómica , Nanotubos de Carbono/ultraestructura , Electricidad Estática , Tensoactivos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...