Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 134(3)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38060313

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is prevalent in the majority of individuals with obesity, but in a subset of these individuals, it progresses to nonalcoholic steatohepatitis (0NASH) and fibrosis. The mechanisms that prevent NASH and fibrosis in the majority of patients with NAFLD remain unclear. Here, we report that NAD(P)H oxidase 4 (NOX4) and nuclear factor erythroid 2-related factor 2 (NFE2L2) were elevated in hepatocytes early in disease progression to prevent NASH and fibrosis. Mitochondria-derived ROS activated NFE2L2 to induce the expression of NOX4, which in turn generated H2O2 to exacerbate the NFE2L2 antioxidant defense response. The deletion or inhibition of NOX4 in hepatocytes decreased ROS and attenuated antioxidant defense to promote mitochondrial oxidative stress, damage proteins and lipids, diminish insulin signaling, and promote cell death upon oxidant challenge. Hepatocyte NOX4 deletion in high-fat diet-fed obese mice, which otherwise develop steatosis, but not NASH, resulted in hepatic oxidative damage, inflammation, and T cell recruitment to drive NASH and fibrosis, whereas NOX4 overexpression tempered the development of NASH and fibrosis in mice fed a NASH-promoting diet. Thus, mitochondria- and NOX4-derived ROS function in concert to drive a NFE2L2 antioxidant defense response to attenuate oxidative liver damage and progression to NASH and fibrosis in obesity.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Antioxidantes , Dieta Alta en Grasa/efectos adversos , Hepatocitos/metabolismo , Peróxido de Hidrógeno/metabolismo , Hígado/metabolismo , Cirrosis Hepática/patología , Ratones Endogámicos C57BL , Mitocondrias/genética , Mitocondrias/metabolismo , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
Cancer Discov ; 12(3): 752-773, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34794959

RESUMEN

Immunotherapies aimed at alleviating the inhibitory constraints on T cells have revolutionized cancer management. To date, these have focused on the blockade of cell-surface checkpoints such as PD-1. Herein we identify protein tyrosine phosphatase 1B (PTP1B) as an intracellular checkpoint that is upregulated in T cells in tumors. We show that increased PTP1B limits T-cell expansion and cytotoxicity to contribute to tumor growth. T cell-specific PTP1B deletion increased STAT5 signaling, and this enhanced the antigen-induced expansion and cytotoxicity of CD8+ T cells to suppress tumor growth. The pharmacologic inhibition of PTP1B recapitulated the T cell-mediated repression of tumor growth and enhanced the response to PD-1 blockade. Furthermore, the deletion or inhibition of PTP1B enhanced the efficacy of adoptively transferred chimeric antigen receptor (CAR) T cells against solid tumors. Our findings identify PTP1B as an intracellular checkpoint whose inhibition can alleviate the inhibitory constraints on T cells and CAR T cells to combat cancer. SIGNIFICANCE: Tumors subvert antitumor immunity by engaging checkpoints that promote T-cell exhaustion. Here we identify PTP1B as an intracellular checkpoint and therapeutic target. We show that PTP1B is upregulated in intratumoral T cells and that its deletion or inhibition enhances T-cell antitumor activity and increases CAR T-cell effectiveness against solid tumors. This article is highlighted in the In This Issue feature, p. 587.


Asunto(s)
Neoplasias , Receptor de Muerte Celular Programada 1 , Animales , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Humanos , Inmunoterapia Adoptiva , Ratones , Neoplasias/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Sci Adv ; 7(51): eabl4988, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34910515

RESUMEN

Reactive oxygen species (ROS) generated during exercise are considered integral for the health-promoting effects of exercise. However, the precise mechanisms by which exercise and ROS promote metabolic health remain unclear. Here, we demonstrate that skeletal muscle NADPH oxidase 4 (NOX4), which is induced after exercise, facilitates ROS-mediated adaptive responses that promote muscle function, maintain redox balance, and prevent the development of insulin resistance. Conversely, reductions in skeletal muscle NOX4 in aging and obesity contribute to the development of insulin resistance. NOX4 deletion in skeletal muscle compromised exercise capacity and antioxidant defense and promoted oxidative stress and insulin resistance in aging and obesity. The abrogated adaptive mechanisms, oxidative stress, and insulin resistance could be corrected by deleting the H2O2-detoxifying enzyme GPX-1 or by treating mice with an agonist of NFE2L2, the master regulator of antioxidant defense. These findings causally link NOX4-derived ROS in skeletal muscle with adaptive responses that promote muscle function and insulin sensitivity.

4.
Endocr Connect ; 6(7): 489-499, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28871060

RESUMEN

Steroid hormones play clinically important and specific regulatory roles in the development, growth, metabolism, reproduction and brain function in human. The type 1 and 2 11-beta hydroxysteroid dehydrogenase enzymes (11ß-HSD1 and 2) have key roles in the pre-receptor modification of glucocorticoids allowing aldosterone regulation of blood pressure, control of systemic fluid and electrolyte homeostasis and modulation of integrated metabolism and brain function. Although the activity and function of 11ß-HSDs is thought to be understood, there exists an open reading frame for a distinct 11ßHSD-like gene; HSD11B1L, which is present in human, non-human primate, sheep, pig and many other higher organisms, whereas an orthologue is absent in the genomes of mouse, rat and rabbit. We have now characterised this novel HSD11B1L gene as encoded by 9 exons and analysis of EST library transcripts indicated the use of two alternate ATG start sites in exons 2 and 3, and alternate splicing in exon 9. Relatively strong HSD11B1L gene expression was detected in human, non-human primate and sheep tissue samples from the brain, ovary and testis. Analysis in non-human primates and sheep by immunohistochemistry localised HSD11B1L protein to the cytoplasm of ovarian granulosa cells, testis Leydig cells, and gonadatroph cells in the anterior pituitary. Intracellular localisation analysis in transfected human HEK293 cells showed HSD1L protein within the endoplasmic reticulum and sequence analysis suggests that similar to 11ßHSD1 it is membrane bound. The endogenous substrate of this third HSD enzyme remains elusive with localisation and expression data suggesting a reproductive hormone as a likely substrate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...