Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(7): e0282756, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37471385

RESUMEN

Methadone-based treatment for pregnant women with opioid use disorder is quite prevalent in the clinical environment. A number of clinical and animal model-based studies have reported cognitive deficits in infants prenatally exposed to methadone-based opioid treatments. However, the long-term impact of prenatal opioid exposure (POE) on pathophysiological mechanisms that govern neurodevelopmental impairment is not well understood. Using a translationally relevant mouse model of prenatal methadone exposure (PME), the aim of this study is to investigate the role of cerebral biochemistry and its possible association with regional microstructural organization in PME offspring. To understand these effects, 8-week-old male offspring with PME (n = 7) and prenatal saline exposure (PSE) (n = 7) were scanned in vivo on 9.4 Tesla small animal scanner. Single voxel proton magnetic resonance spectroscopy (1H-MRS) was performed in the right dorsal striatum (RDS) region using a short echo time (TE) Stimulated Echo Acquisition Method (STEAM) sequence. Neurometabolite spectra from the RDS was first corrected for tissue T1 relaxation and then absolute quantification was performed using the unsuppressed water spectra. High-resolution in vivo diffusion MRI (dMRI) for region of interest (ROI) based microstructural quantification was also performed using a multi-shell dMRI sequence. Cerebral microstructure was characterized using diffusion tensor imaging (DTI) and Bingham-neurite orientation dispersion and density imaging (Bingham-NODDI). MRS results in the RDS showed significant decrease in N-acetyl aspartate (NAA), taurine (tau), glutathione (GSH), total creatine (tCr) and glutamate (Glu) concentration levels in PME, compared to PSE group. In the same RDS region, mean orientation dispersion index (ODI) and intracellular volume fraction (VFIC) demonstrated positive associations with tCr in PME group. ODI also exhibited significant positive association with Glu levels in PME offspring. Significant reduction in major neurotransmitter metabolites and energy metabolism along with strong association between the neurometabolites and perturbed regional microstructural complexity suggest a possible impaired neuroadaptation trajectory in PME offspring which could be persistent even into late adolescence and early adulthood.


Asunto(s)
Analgésicos Opioides , Imagen de Difusión Tensora , Embarazo , Ratones , Animales , Masculino , Humanos , Femenino , Imagen de Difusión Tensora/métodos , Analgésicos Opioides/metabolismo , Neuritas/metabolismo , Imagen de Difusión por Resonancia Magnética , Modelos Animales de Enfermedad , Metadona , Espectroscopía de Resonancia Magnética , Receptores de Antígenos de Linfocitos T/metabolismo , Encéfalo/metabolismo
2.
bioRxiv ; 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36865153

RESUMEN

Methadone-based treatment for pregnant women with opioid use disorder is quite prevalent in the clinical environment. A number of clinical and animal model-based studies have reported cognitive deficits in infants prenatally exposed to methadone-based opioid treatments. However, the long-term impact of prenatal opioid exposure (POE) on pathophysiological mechanisms that govern neurodevelopmental impairment is not well understood. Using a translationally relevant mouse model of prenatal methadone exposure (PME), the aim of this study is to investigate the role of cerebral biochemistry and its possible association with regional microstructural organization in PME offspring. To understand these effects, 8- week-old male offspring with PME (n=7) and prenatal saline exposure (PSE) (n=7) were scanned in vivo on 9.4 Tesla small animal scanner. Single voxel proton magnetic resonance spectroscopy ( 1 H-MRS) was performed in the right dorsal striatum (RDS) region using a short echo time (TE) Stimulated Echo Acquisition Method (STEAM) sequence. Neurometabolite spectra from the RDS was first corrected for tissue T1 relaxation and then absolute quantification was performed using the unsuppressed water spectra. High-resolution in vivo diffusion MRI (dMRI) for region of interest (ROI) based microstructural quantification was also performed using a multi-shell dMRI sequence. Cerebral microstructure was characterized using diffusion tensor imaging (DTI) and Bingham-neurite orientation dispersion and density imaging (Bingham-NODDI). MRS results in the RDS showed significant decrease in N-acetyl aspartate (NAA), taurine (tau), glutathione (GSH), total creatine (tCr) and glutamate (Glu) concentration levels in PME, compared to PSE group. In the same RDS region, mean orientation dispersion index (ODI) and intracellular volume fraction (VF IC ) demonstrated positive associations with tCr in PME group. ODI also exhibited significant positive association with Glu levels in PME offspring. Significant reduction in major neurotransmitter metabolites and energy metabolism along with strong association between the neurometabolites and perturbed regional microstructural complexity suggest a possible impaired neuroadaptation trajectory in PME offspring which could be persistent even into late adolescence and early adulthood.

3.
Front Pharmacol ; 14: 1124108, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817148

RESUMEN

As problematic opioid use has reached epidemic levels over the past 2 decades, the annual prevalence of opioid use disorder (OUD) in pregnant women has also increased 333%. Yet, how opioids affect the developing brain of offspring from mothers experiencing OUD remains understudied and not fully understood. Animal models of prenatal opioid exposure have discovered many deficits in the offspring of prenatal opioid exposed mothers, such as delays in the development of sensorimotor function and long-term locomotive hyperactivity. In attempt to further understand these deficits and link them with protein changes driven by prenatal opioid exposure, we used a mouse model of prenatal methadone exposure (PME) and preformed an unbiased multi-omic analysis across many sensoriomotor brain regions known to interact with opioid exposure. The effects of PME exposure on the primary motor cortex (M1), primary somatosensory cortex (S1), the dorsomedial striatum (DMS), and dorsolateral striatum (DLS) were assessed using quantitative proteomics and phosphoproteomics. PME drove many changes in protein and phosphopeptide abundance across all brain regions sampled. Gene and gene ontology enrichments were used to assess how protein and phosphopeptide changes in each brain region were altered. Our findings showed that M1 was uniquely affected by PME in comparison to other brain regions. PME uniquely drove changes in M1 glutamatergic synapses and synaptic function. Immunohistochemical analysis also identified anatomical differences in M1 for upregulating the density of glutamatergic and downregulating the density of GABAergic synapses due to PME. Lastly, comparisons between M1 and non-M1 multi-omics revealed conserved brain wide changes in phosphopeptides associated with synaptic activity and assembly, but only specific protein changes in synapse activity and assembly were represented in M1. Together, our studies show that lasting changes in synaptic function driven by PME are largely represented by protein and anatomical changes in M1, which may serve as a starting point for future experimental and translational interventions that aim to reverse the adverse effects of PME on offspring.

4.
Sci Rep ; 12(1): 17085, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224335

RESUMEN

Growing opioid use among pregnant women is fueling a crisis of infants born with prenatal opioid exposure. A large body of research has been devoted to studying the management of opioid withdrawal during the neonatal period in these infants, but less substantive work has explored the long-term impact of prenatal opioid exposure on neurodevelopment. Using a translationally relevant mouse model of prenatal methadone exposure (PME), the aim of the study is to investigate the cerebral microstructural differences between the mice with PME and prenatal saline exposure (PSE). The brains of eight-week-old male offspring with either PME (n = 15) or PSE (n = 15) were imaged using high resolution in-vivo diffusion magnetic resonance imaging on a 9.4 Tesla small animal scanner. Brain microstructure was characterized using diffusion tensor imaging (DTI) and Bingham neurite orientation dispersion and density imaging (Bingham-NODDI). Voxel-based analysis (VBA) was performed using the calculated microstructural parametric maps. The VBA showed significant (p < 0.05) bilateral alterations in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), orientation dispersion index (ODI) and dispersion anisotropy index (DAI) across several cortical and subcortical regions, compared to PSE. Particularly, in PME offspring, FA, MD and AD were significantly higher in the hippocampus, dorsal amygdala, thalamus, septal nuclei, dorsal striatum and nucleus accumbens. These DTI-based results suggest widespread bilateral microstructural alterations across cortical and subcortical regions in PME offspring. Consistent with the observations in DTI, Bingham-NODDI derived ODI exhibited significant reduction in PME offspring within the hippocampus, dorsal striatum and cortex. NODDI-based results further suggest reduction in dendritic arborization in PME offspring across multiple cortical and subcortical regions. To our best knowledge, this is the first study of prenatal opioid exposure to examine microstructural organization in vivo. Our findings demonstrate perturbed microstructural complexity in cortical and subcortical regions persisting into early adulthood which could interfere with critical neurodevelopmental processes in individuals with prenatal opioid exposure.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Blanca , Analgésicos Opioides/efectos adversos , Animales , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Metadona , Ratones , Neuritas , Embarazo , Sustancia Blanca/patología
5.
Elife ; 112022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36098397

RESUMEN

How does binge drinking alcohol change synaptic function, and do these changes maintain binge consumption? The anterior insular cortex (AIC) and dorsolateral striatum (DLS) are brain regions implicated in alcohol use disorder. In male, but not female mice, we found that binge drinking alcohol produced glutamatergic synaptic adaptations selective to AIC inputs within the DLS. Photoexciting AIC→DLS circuitry in male mice during binge drinking decreased alcohol, but not water consumption and altered alcohol drinking mechanics. Further, drinking mechanics alone from drinking session data predicted alcohol-related circuit changes. AIC→DLS manipulation did not alter operant, valence, or anxiety-related behaviors. These findings suggest that alcohol-mediated changes at AIC inputs govern behavioral sequences that maintain binge drinking and may serve as a circuit-based biomarker for the development of alcohol use disorder.


Asunto(s)
Alcoholismo , Consumo Excesivo de Bebidas Alcohólicas , Consumo de Bebidas Alcohólicas , Animales , Etanol , Corteza Insular , Masculino , Ratones , Ratones Endogámicos C57BL
6.
eNeuro ; 9(2)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35396255

RESUMEN

The opioid crisis has contributed to a growing population of children exposed to opioids during fetal development; however, many of the long-term effects of opioid exposure on development are unknown. We previously demonstrated that opioids have deleterious effects on endocannabinoid plasticity at glutamate synapses in the dorsal striatum of adolescent rodents, but it is unclear whether prenatal opioid exposure produces similar neuroadaptations. Using a mouse model of prenatal methadone exposure (PME), we performed proteomics, phosphoproteomics, and patch-clamp electrophysiology in the dorsolateral striatum (DLS) and dorsomedial striatum (DMS) to examine synaptic functioning in adolescent PME offspring. PME impacted the proteome and phosphoproteome in a region- and sex-dependent manner. Many proteins and phosphorylated proteins associated with glutamate transmission were differentially abundant in PME offspring, which was associated with reduced glutamate release in the DLS and altered the rise time of excitatory events in the DMS. Similarly, the intrinsic excitability properties of DMS neurons were significantly affected by PME. Last, pathway analyses revealed an enrichment in retrograde endocannabinoid signaling in the DLS, but not in the DMS, of males. Electrophysiology studies confirmed that endocannabinoid-mediated synaptic depression was impaired in the DLS, but not DMS, of PME-males. These results indicate that PME induces persistent neuroadaptations in the dorsal striatum and could contribute to the aberrant behavioral development described in offspring with prenatal opioid exposure.


Asunto(s)
Analgésicos Opioides , Ácido Glutámico , Analgésicos Opioides/farmacología , Cuerpo Estriado/metabolismo , Endocannabinoides/metabolismo , Femenino , Ácido Glutámico/metabolismo , Humanos , Masculino , Embarazo , Sinapsis/metabolismo
7.
Addict Biol ; 27(2): e13136, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35229956

RESUMEN

As the opioid crisis has continued to grow, so has the number of infants exposed to opioids during the prenatal period. A growing concern is that prenatal exposure to opioids may induce persistent neurological changes that increase the propensity for future addictions. Although alcohol represents the most likely addictive substance that the growing population of prenatal opioid exposed will encounter as they mature, no studies to date have examined the effect of prenatal opioid exposure on future sensitivity to alcohol reward. Using a recently developed mouse model of prenatal methadone exposure (PME), we investigated the rewarding properties of alcohol and alcohol consumption in male and female adolescent PME and prenatal saline exposed (PSE) control animals. Conditioned place preference to alcohol was disrupted in PME offspring in a sex-dependent manner with PME males exhibiting resistance to the rewarding properties of alcohol. Repeated injections of alcohol revealed enhanced sensitivity to the locomotor-stimulating effects of alcohol specific to PME females. PME males consumed significantly more alcohol over 4 weeks of alcohol access relative to PSE males and exhibited increased resistance to quinine-adulterated alcohol. Further, a novel machine learning model was developed to employ measured differences in alcohol consumption and drinking microstructure to reliably predict prenatal exposure. These findings indicate that PME alters the sensitivity to alcohol reward in adolescent mice in a sex-specific manner and suggests prenatal opioid exposure may induce persistent effects on reward neurocircuitry that can reprogram offspring behavioural response to alcohol later in life.


Asunto(s)
Analgésicos Opioides , Efectos Tardíos de la Exposición Prenatal , Analgésicos Opioides/farmacología , Animales , Etanol/farmacología , Femenino , Masculino , Metadona , Ratones , Embarazo , Recompensa
8.
Artículo en Inglés | MEDLINE | ID: mdl-37829495

RESUMEN

Rising opioid use among pregnant women has led to a growing population of neonates exposed to opioids during the prenatal period, but how opioids affect the developing brain remains to be fully understood. Animal models of prenatal opioid exposure have discovered deficits in somatosensory behavioral development that persist into adolescence suggesting opioid exposure induces long lasting neuroadaptations on somatosensory circuitry such as the primary somatosensory cortex (S1). Using a mouse model of prenatal methadone exposure (PME) that displays delays in somatosensory milestone development, we performed an un-biased multi-omics analysis and investigated synaptic functioning in the primary somatosensory cortex (S1), where touch and pain sensory inputs are received in the brain, of early adolescent PME offspring. PME was associated with numerous changes in protein and phosphopeptide abundances that differed considerably between sexes in the S1. Although prominent sex effects were discovered in the multi-omics assessment, functional enrichment analyses revealed the protein and phosphopeptide differences were associated with synapse-related cellular components and synaptic signaling-related biological processes, regardless of sex. Immunohistochemical analysis identified diminished GABAergic synapses in both layer 2/3 and 4 of PME offspring. These immunohistochemical and proteomic alterations were associated with functional consequences as layer 2/3 pyramidal neurons revealed reduced amplitudes and a lengthened decay constant of inhibitory postsynaptic currents. Lastly, in addition to reduced cortical thickness of the S1, cell-type marker analysis revealed reduced microglia density in the upper layer of the S1 that was primarily driven by PME females. Taken together, our studies show the lasting changes on synaptic function and microglia in S1 cortex caused by PME in a sex-dependent manner.

9.
Drug Alcohol Depend ; 227: 108914, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34364194

RESUMEN

Background While many studies have described the impact of prenatal opioid exposure on development, possible mechanisms for how opioids exert developmental impairments remain elusive. Emerging evidence indicates disruptions in the maternal gut microbiome can alter offspring development; however, no studies to date have examined the impact of maternal opioid treatment on maternal-offspring microbiome dysbiosis. Methods A mouse model of prenatal methadone exposure (PME) was employed to assess the impact of maternal opioid treatment on the microbiome of methadone-treated dams (MD) and their offspring. Fecal samples were collected from dams (n = 8 per treatment), one male and one female offspring per dam (n = 8 offspring per sex per treatment) for 16S rRNA sequencing. Results Methadone treatment significantly increased the microbial diversity and led to an expansion in family level bacterial abundance. Correlational analysis revealed significant positive associations between dam and offspring measures of diversity indicating methadone-induced shifts in the microbial communities are shared between dam and offspring. Sixteen features in dams and 10 features in offspring were significantly differentially abundant between treatment groups with many features corresponding to the Lachnospiraceae NK4A136 genus. Of the six features identified as differentially abundant in both MD and PME offspring, all were assigned to the Lachnospiraceae NK4A136 group, and the abundances demonstrated strong positive correlations between dam and offspring. Conclusions These preliminary findings indicate that maternal opioid treatment during pregnancy alters the composition of the maternal microbiome, and this opioid-induced shift is similarly observed in offspring which could contribute to the impaired developmental phenotypes previously described.


Asunto(s)
Microbioma Gastrointestinal , Efectos Tardíos de la Exposición Prenatal , Analgésicos Opioides , Animales , Femenino , Masculino , Metadona , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , ARN Ribosómico 16S/genética
10.
Brain Imaging Behav ; 15(5): 2436-2444, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34097282

RESUMEN

Multimodal imaging is increasingly used to address neuropathology associated with alcohol use disorder (AUD). Few studies have investigated relationships between metabolite concentrations and white matter (WM) integrity; currently, there are no such data in AUD. In this preliminary study, we used complementary neuroimaging techniques, magnetic resonance spectroscopy (MRS), and diffusion weighted imaging (DWI), to study AUD neurophysiology. We tested for relationships between metabolites in the dorsal anterior cingulate cortex (dACC) and adjacent WM microstructure in young adult AUD and control (CON) subjects. Sixteen AUD and fourteen CON underwent whole-brain DWI and MRS of the dACC. Outcomes were dACC metabolites, and diffusion tensor metrics of dACC-adjacent WM. Multiple linear regression terms included WM region, group, and region × group for prediction of dACC metabolites. dACC myo-inositol was positively correlated with axial diffusivity in the left anterior corona radiata (p < 0.0001) in CON but not AUD (group effect: p < 0.001; region × group: p < 0.001; Bonferroni-corrected). In the bilateral anterior corona radiata and right genu of the corpus callosum, glutamate was negatively related to mean diffusivity in AUD, but not CON subjects (all model terms: p < 0.05, uncorrected). In AUD subjects, dACC glutamate was negatively correlated with AUD symptom severity. This is likely the first integrative study of cortical metabolites and WM integrity in young individuals with AUD. Differential relationships between dACC metabolites and adjacent WM tract integrity in AUD could represent early consequences of hazardous drinking, and/or novel biomarkers of early-stage AUD. Additional studies are required to replicate these findings, and to determine the behavioral relevance of these results.


Asunto(s)
Alcoholismo , Sustancia Blanca , Imagen de Difusión Tensora , Giro del Cíngulo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Sustancia Blanca/diagnóstico por imagen
11.
Elife ; 102021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33724184

RESUMEN

Despite the rising prevalence of methadone treatment in pregnant women with opioid use disorder, the effects of methadone on neurobehavioral development remain unclear. We developed a translational mouse model of prenatal methadone exposure (PME) that resembles the typical pattern of opioid use by pregnant women who first use oxycodone then switch to methadone maintenance pharmacotherapy, and subsequently become pregnant while maintained on methadone. We investigated the effects of PME on physical development, sensorimotor behavior, and motor neuron properties using a multidisciplinary approach of physical, biochemical, and behavioral assessments along with brain slice electrophysiology and in vivo magnetic resonance imaging. Methadone accumulated in the placenta and fetal brain, but methadone levels in offspring dropped rapidly at birth which was associated with symptoms and behaviors consistent with neonatal opioid withdrawal. PME produced substantial impairments in offspring physical growth, activity in an open field, and sensorimotor milestone acquisition. Furthermore, these behavioral alterations were associated with reduced neuronal density in the motor cortex and a disruption in motor neuron intrinsic properties and local circuit connectivity. The present study adds to the limited body of work examining PME by providing a comprehensive, translationally relevant characterization of how PME disrupts offspring physical and neurobehavioral development.


The far-reaching opioid crisis extends to babies born to mothers who take prescription or illicit opioids during pregnancy. Opioids such as oxycodone and methadone can freely cross the placenta from mother to baby. With the rising misuse of and addiction to opioids, the number of babies born physically dependent on opioids has risen sharply over the last decade. Although these infants are only passively exposed to opioids in the womb, they can still experience withdrawal symptoms at birth. This withdrawal is characterized by irritability, excessive crying, body shakes, problems with feeding, fevers and diarrhea. While considerable attention has been given to treating opioid withdrawal in newborn babies, little is known about how these children develop in their first years of life. This is, in part, because it is difficult for researchers to separate drug-related effects from other factors in a child's home environment that can also disrupt their development. In addition, the biological mechanisms underpinning opioid-related impairments to infant development also remain unclear. Animal models have been used to study the effects of opioid exposure during pregnancy (termed prenatal exposure) on infants. These models, however, could be improved to better replicate the typical pattern of opioid use among pregnant women. Recognizing this gap, Grecco et al. have developed a mouse model of prenatal methadone exposure where female mice that were previously dependent on oxycodone were treated with methadone throughout their pregnancy. Methadone is an opioid drug commonly prescribed for treating opioid use disorder in pregnant women and was found to accumulate at high levels in the fetal brain of mice, which fell quickly after birth. The offspring also experienced withdrawal symptoms. Grecco et al. then examined the physical, behavioral and brain development of mice born to opioid-treated mothers. These included assessments of the animals' motor skills, sensory reflexes and behavior in their first four weeks of life. Additional experiments tested the properties of nerve cells in the brain to examine cell-level changes. The assessments showed that methadone exposure in the womb impaired the physical growth of offspring and this persisted into 'adolescence'. Prenatal methadone exposure also delayed progress towards key developmental milestones and led to hyperactivity in three-week-old mice. Moreover, Grecco et al. found that these mice had reduced neuron density and cell-to-cell connectivity in the part of the brain which controls movement. These findings shed light on the potential consequences of prenatal methadone exposure on physical, behavioral and brain development in infants. This model could also be used to study new potential treatments or intervention strategies for offspring exposed to opioids during pregnancy.


Asunto(s)
Metadona/efectos adversos , Neuronas Motoras/metabolismo , Trastornos Relacionados con Opioides/tratamiento farmacológico , Complicaciones del Embarazo/tratamiento farmacológico , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Analgésicos Opioides/efectos adversos , Analgésicos Opioides/uso terapéutico , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Femenino , Humanos , Masculino , Exposición Materna/efectos adversos , Metadona/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Tratamiento de Sustitución de Opiáceos/métodos , Embarazo
12.
Addict Biol ; 26(3): e12942, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32686251

RESUMEN

The role of Mu opioid receptor (MOR)-mediated regulation of GABA transmission in opioid reward is well established. Much less is known about MOR-mediated regulation of glutamate transmission in the brain and how this relates to drug reward. We previously found that MORs inhibit glutamate transmission at synapses that express the Type 2 vesicular glutamate transporter (vGluT2). We created a transgenic mouse that lacks MORs in vGluT2-expressing neurons (MORflox-vGluT2cre) to demonstrate that MORs on the vGluT2 neurons themselves mediate this synaptic inhibition. We then explored the role of MORs in vGluT2-expressing neurons in opioid-related behaviors. In tests of conditioned place preference, MORflox-vGluT2cre mice did not acquire place preference for a low dose of the opioid, oxycodone, but displayed conditioned place aversion at a higher dose, whereas control mice displayed preference for both doses. In an oral consumption assessment, these mice consumed less oxycodone and had reduced preference for oxycodone compared with controls. MORflox-vGluT2cre mice also failed to show oxycodone-induced locomotor stimulation. These mice displayed baseline withdrawal-like responses following the development of oxycodone dependence that were not seen in littermate controls. In addition, withdrawal-like responses in these mice did not increase following treatment with the opioid antagonist, naloxone. However, other MOR-mediated behaviors were unaffected, including oxycodone-induced analgesia. These data reveal that MOR-mediated regulation of glutamate transmission is a critical component of opioid reward.


Asunto(s)
Neuronas/metabolismo , Oxicodona/farmacología , Receptores Opioides mu/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Animales , Condicionamiento Clásico/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Recompensa
13.
J Neurochem ; 157(4): 1013-1031, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33111353

RESUMEN

The development of selectively bred high and low alcohol-preferring mice (HAP and LAP, respectively) has allowed for an assessment of the polygenetic risk for pathological alcohol consumption and phenotypes associated with alcohol use disorder (AUD). Accumulating evidence indicates that the dorsal striatum (DS) is a central node in the neurocircuitry underlying addictive processes. Therefore, knowledge of differential gene, protein, and phosphorylated protein expression in the DS of HAP and LAP mice may foster new insights into how aberrant DS functioning may contribute to AUD-related phenotypes. To begin to elucidate these basal differences, a complementary and integrated analysis of DS tissue from alcohol-naïve male and female HAP and LAP mice was performed using RNA sequencing, quantitative proteomics, and phosphoproteomics. These datasets were subjected to a thorough analysis of gene ontology, pathway enrichment, and hub gene assessment. Analyses identified 2,108, 390, and 521 significant differentially expressed genes, proteins, and phosphopeptides, respectively between the two lines. Network analyses revealed an enrichment in the differential expression of genes, proteins, and phosphorylated proteins connected to cellular organization, cytoskeletal protein binding, and pathways involved in synaptic transmission and functioning. These findings suggest that the selective breeding to generate HAP and LAP mice may lead to a rearrangement of synaptic architecture which could alter DS neurotransmission and plasticity differentially between mouse lines. These rich datasets will serve as an excellent resource to inform future studies on how inherited differences in gene, protein, and phosphorylated protein expression contribute to AUD-related phenotypes.


Asunto(s)
Alcoholismo/genética , Cuerpo Estriado , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad/genética , Animales , Femenino , Genómica/métodos , Masculino , Ratones , Proteómica/métodos
14.
eNeuro ; 7(6)2020.
Artículo en Inglés | MEDLINE | ID: mdl-33060181

RESUMEN

The opioid crisis has resulted in an unprecedented number of neonates born with prenatal opioid exposure (POE); however, the long-term effects of POE on offspring behavior and neurodevelopment remain relatively unknown. The advantages and disadvantages of the various preclinical POE models developed over the last several decades are discussed in the context of clinical and translational relevance. Although considerable and important variability exists among preclinical models of POE, the examination of these preclinical models has revealed that opioid exposure during the prenatal period contributes to maladaptive behavioral development as offspring mature including an altered responsiveness to rewarding drugs and increased pain response. The present review summarizes key findings demonstrating the impact of POE on offspring drug self-administration (SA), drug consumption, the reinforcing properties of drugs, drug tolerance, and other reward-related behaviors such as hypersensitivity to pain. Potential underlying molecular mechanisms which may contribute to this enhanced addictive phenotype in POE offspring are further discussed with special attention given to key brain regions associated with reward including the striatum, prefrontal cortex (PFC), ventral tegmental area (VTA), hippocampus, and amygdala. Improvements in preclinical models and further areas of study are also identified which may advance the translational value of findings and help address the growing problem of POE in clinical populations.


Asunto(s)
Analgésicos Opioides , Preparaciones Farmacéuticas , Analgésicos Opioides/efectos adversos , Femenino , Humanos , Recién Nacido , Dolor , Embarazo , Recompensa , Área Tegmental Ventral
16.
Mol Ther Methods Clin Dev ; 17: 69-82, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31890742

RESUMEN

Adeno-associated viral vectors (AAVs) are increasingly useful preclinical tools in neuroscience research studies for interrogating cellular and neurocircuit functions and mapping brain connectivity. Clinically, AAVs are showing increasing promise as viable candidates for treating multiple neurological diseases. Here, we briefly review the utility of AAVs in mapping neurocircuits, manipulating neuronal function and gene expression, and activity labeling in preclinical research studies as well as AAV-based gene therapies for diseases of the nervous system. This review highlights the vast potential that AAVs have for transformative research and therapeutics in the neurosciences.

17.
Med Teach ; 42(10): 1187-1188, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31652080

RESUMEN

This personal view about the overemphasis placed on United States Medical Licensing Examination scores and how the U.S. undergraduate medical education system currently assesses medical student competency is based on my personal experience as both a medical student and a hospitalized patient. In this unique perspective piece, I describe my story as a patient and how that experience led me to consider if the current pressure placed on students to master scientific concepts ('Science of Medicine') is hindering our ability to develop the skills that are required to connect with patient at the bedside ('Art of Medicine'). I propose a restructuring effort of the current training environment and methods of assessing medical student competency in the U.S. could improve the future quality of patient care provided by trainees.


Asunto(s)
Educación de Pregrado en Medicina , Estudiantes de Medicina , Humanos , Estados Unidos
18.
Transl Psychiatry ; 9(1): 320, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31780638

RESUMEN

In 1939, British psychiatrist Lionel Penrose described an inverse relationship between mental health treatment infrastructure and criminal incarcerations. This relationship, later termed the 'Penrose Effect', has proven remarkably predictive of modern trends which have manifested as reciprocal components, referred to as 'deinstitutionalization' and 'mass incarceration'. In this review, we consider how a third dynamic-the criminalization of addiction via the 'War on Drugs', although unanticipated by Penrose, has likely amplified the Penrose Effect over the last 30 years, with devastating social, economic, and healthcare consequences. We discuss how synergy been the Penrose Effect and the War on Drugs has been mediated by, and reflects, a fundamental neurobiological connection between the brain diseases of mental illness and addiction. This neuroscience of dual diagnosis, also not anticipated by Penrose, is still not being adequately translated into improving clinical training, practice, or research, to treat patients across the mental illness-addictions comorbidity spectrum. This failure in translation, and the ongoing fragmentation and collapse of behavioral healthcare, has worsened the epidemic of untreated mental illness and addictions, while driving unsustainable government investment into mass incarceration and high-cost medical care that profits too exclusively on injuries and multi-organ diseases resulting from untreated addictions. Reversing the fragmentation and decline of behavioral healthcare with decisive action to co-integrate mental health and addiction training, care, and research-may be key to ending criminalization of mental illness and addiction, and refocusing the healthcare system on keeping the population healthy at the lowest possible cost.


Asunto(s)
Prestación Integrada de Atención de Salud , Trastornos Mentales/terapia , Servicios de Salud Mental/organización & administración , Prisiones/estadística & datos numéricos , Trastornos Relacionados con Sustancias/terapia , Diagnóstico Dual (Psiquiatría) , Humanos , Trastornos Mentales/epidemiología , Servicios de Salud Mental/economía , Prisiones/economía , Trastornos Relacionados con Sustancias/epidemiología , Estados Unidos/epidemiología
19.
Alcohol Clin Exp Res ; 43(6): 1170-1179, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30977902

RESUMEN

BACKGROUND: Magnetic resonance imaging (MRI) studies have shown differences in volume and structure in the brains of individuals with alcohol use disorder (AUD). Most research has focused on neuropathological effects of alcohol that appear after years of chronic alcohol misuse. However, few studies have investigated white matter (WM) microstructure and diffusion MRI-based (DWI) connectivity during early stages of AUD. Therefore, the goal of this work was to investigate WM integrity and structural connectivity in emerging adulthood AUD subjects using both conventional DWI metrics and a novel connectomics approach. METHODS: Twenty-two AUD and 18 controls (CON) underwent anatomic and diffusion MRI. Outcome measures were scalar diffusion metrics and structural network connectomes. Tract-Based Spatial Statistics was used to investigate group differences in diffusion measures. Structural connectomes were used as input into a community structure procedure to obtain a coclassification index matrix (an indicator of community association strength) for each subject. Differences in coclassification and structural connectivity (indexed by streamline density) were assessed via the Network Based Statistics Toolbox. RESULTS: AUD had higher fractional anisotropy (FA) values throughout the major WM tracts, but also had lower FA values in WM tracts in the cerebellum and right insula (pTFCE  < 0.05). Mean diffusivity was generally lower in the AUD group (pTFCE  < 0.05). AUD had lower coclassification of nodes between ventral attention and default mode networks and higher coclassification between nodes of visual, default mode, and somatomotor networks. Additionally, AUD had higher fiber density between an adjacent pair of nodes within the default mode network. CONCLUSIONS: Our results indicate that emerging adulthood AUD subjects may have differential patterns of FA and distinct differences in structural connectomes compared with CON. These data suggest that such alterations in microstructure and structural connectivity may uniquely characterize early stages of AUD and/or a predisposition for development of AUD.


Asunto(s)
Alcoholismo/diagnóstico por imagen , Conectoma , Sustancia Blanca/diagnóstico por imagen , Adulto , Estudios de Casos y Controles , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Masculino , Adulto Joven
20.
Data Brief ; 21: 1045-1050, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30450398

RESUMEN

The synthetic cathinones methylone, butylone, and pentylone differ from each other through the one carbon lengthening of the α-alkyl chain: methylone (-CH3), butylone (-CH2CH3), and pentylone (-CH2CH2CH3) while 3,4-methylenedioxymethamphetamine (MDMA) differs from methylone by a single oxygen atom. Studies with MDMA, suggests that there may be male and female pharmacokinetic and pharmacodynamic differences. In the present study, we present the plasma pharmacokinetic data relative to a 20 mg/kg, subcutaneous doses of methylone, butylone and pentylone in female Sprague-Dawley rats. Briefly, plasma samples were collected via a jugular vein cannula, purified, and analyzed using a HPLC system. While we have previously reported on the consistent relationship between structure and pharmacokinetics of these synthetic cathinones in male, Sprague-Dawley rats (Grecco and Sprague, 2016), this data set suggests that there is no consistent relationship of chemical structure and pharmacokinetics of methylone, butylone and pentylone in female Sprague-Dawley rats. The findings from the present study further emphasize the need for the inclusion of female subjects in the pharmacokinetic studies of synthetic cathinones as it is very possible male-female differences may exist in rodent models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA