Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 229: 116480, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39128587

RESUMEN

Alamandine (ALA) exerts protective effects similar to angiotensin (Ang) (1-7) through Mas-related G protein-coupled receptor type D receptor (MrgDR) activation, distinct from Mas receptor (MasR). ALA induces anti-inflammatory effects in mice but its impact in human macrophages remains unclear. We aimed to investigate the anti-inflammatory effects of ALA in human macrophages. Interleukin (IL)-6 and IL-1ß were measured by ELISA in human THP-1 macrophages and human monocyte-derived macrophages exposed to lipopolysaccharide (LPS). Consequences of MasR-MrgDR heteromerization were investigated in transfected HEK293T cells. ALA decreased IL-6 and IL-1ß secretion in LPS-activated THP-1 macrophages. The ALA-induced decrease in IL-6 but not in IL-1ß was prevented by MasR blockade and MasR downregulation, suggesting MasR-MrgDR interaction. In human monocyte-derived M1 macrophages, ALA decreased IL-1ß secretion independently of MasR. MasR-MrgDR interaction was confirmed in THP-1 macrophages, human monocyte-derived macrophages, and transfected HEK293T cells. MasR and MrgDR formed a constitutive heteromer that was not influenced by ALA. ALA promoted Akt and ERK1/2 activation only in cells expressing MasR-MrgDR heteromers, and this effect was prevented by MasR blockade. While Ang-(1-7) reduced cellular proliferation in MasR -but not MrgDR- expressing cells, ALA antiproliferative effect was elicited in cells expressing MasR-MrgDR heteromers. ALA also induced an antiproliferative response in THP-1 cells and this effect was abolished by MasR blockade, reinforcing MasR-MrgDR interaction. MasR-MrgDR heteromerization is crucial for ALA-induced anti-inflammatory and antiproliferative responses in human macrophages. This study broaden our knowledge of the protective axis of the RAS, thus enabling novel therapeutic approaches in inflammatory-associated diseases.


Asunto(s)
Proliferación Celular , Interleucina-6 , Macrófagos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas , Receptores Acoplados a Proteínas G , Sistema Renina-Angiotensina , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Proliferación Celular/efectos de los fármacos , Células HEK293 , Receptores Acoplados a Proteínas G/metabolismo , Interleucina-6/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Sistema Renina-Angiotensina/fisiología , Células THP-1 , Multimerización de Proteína/efectos de los fármacos , Oligopéptidos
2.
Bioinformatics ; 40(8)2024 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-39078116

RESUMEN

MOTIVATION: Chemical reaction networks (CRNs) play a pivotal role in diverse fields such as systems biology, biochemistry, chemical engineering, and epidemiology. High-level definitions of CRNs enables to use various simulation approaches, including deterministic and stochastic methods, from the same model. However, existing Python tools for simulation of CRN typically wrap external C/C++ libraries for model definition, translation into equations and/or numerically solving them, limiting their extensibility and integration with the broader Python ecosystem. RESULTS: In response, we developed Poincaré and SimBio, two novel Python packages for simulation of dynamical systems and CRNs. Poincaré serves as a foundation for dynamical systems modeling, while SimBio extends this functionality to CRNs, including support for the Systems Biology Markup Language (SBML). Poincaré and SimBio are developed as pure Python packages enabling users to easily extend their simulation capabilities by writing new or leveraging other Python packages. Moreover, this does not compromise the performance, as code can be just-in-time compiled with Numba. Our benchmark tests using curated models from the BioModels repository demonstrate that these tools may provide a potentially superior performance advantage compared to other existing tools. In addition, to ensure a user-friendly experience, our packages use standard typed modern Python syntax that provides a seamless integration with integrated development environments. Our Python-centric approach significantly enhances code analysis, error detection, and refactoring capabilities, positioning Poincaré and SimBio as valuable tools for the modeling community. AVAILABILITY AND IMPLEMENTATION: Poincaré and SimBio are released under the MIT license. Their source code is available on GitHub (https://github.com/maurosilber/poincare and https://github.com/hgrecco/simbio) and can be installed from PyPI or conda-forge.


Asunto(s)
Lenguajes de Programación , Programas Informáticos , Biología de Sistemas , Biología de Sistemas/métodos , Simulación por Computador , Modelos Biológicos
3.
J Microsc ; 294(3): 420-439, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38747464

RESUMEN

In September 2023, the two largest bioimaging networks in the Americas, Latin America Bioimaging (LABI) and BioImaging North America (BINA), came together during a 1-week meeting in Mexico. This meeting provided opportunities for participants to interact closely with decision-makers from imaging core facilities across the Americas. The meeting was held in a hybrid format and attended in-person by imaging scientists from across the Americas, including Canada, the United States, Mexico, Colombia, Peru, Argentina, Chile, Brazil and Uruguay. The aims of the meeting were to discuss progress achieved over the past year, to foster networking and collaborative efforts among members of both communities, to bring together key members of the international imaging community to promote the exchange of experience and expertise, to engage with industry partners, and to establish future directions within each individual network, as well as common goals. This meeting report summarises the discussions exchanged, the achievements shared, and the goals set during the LABIxBINA2023: Bioimaging across the Americas meeting.

4.
BMC Bioinformatics ; 24(1): 230, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270479

RESUMEN

BACKGROUND: In tissues and organisms, the coordination of neighboring cells is essential to maintain their properties and functions. Therefore, knowing which cells are adjacent is crucial to understand biological processes that involve physical interactions among them, e.g. cell migration and proliferation. In addition, some signaling pathways, such as Notch or extrinsic apoptosis, are highly dependent on cell-cell communication. While this is straightforward to obtain from membrane images, nuclei labelling is much more ubiquitous for technical reasons. However, there are no automatic and robust methods to find neighboring cells based only on nuclear markers. RESULTS: In this work, we describe Nfinder, a method to assess the cell's local neighborhood from images with nuclei labeling. To achieve this goal, we approximate the cell-cell interaction graph by the Delaunay triangulation of nuclei centroids. Then, links are filtered by automatic thresholding in cell-cell distance (pairwise interaction) and the maximum angle that a pair of cells subtends with shared neighbors (non-pairwise interaction). We systematically characterized the detection performance by applying Nfinder to publicly available datasets from Drosophila melanogaster, Tribolium castaneum, Arabidopsis thaliana and C. elegans. In each case, the result of the algorithm was compared to a cell neighbor graph generated by manually annotating the original dataset. On average, our method detected 95% of true neighbors, with only 6% of false discoveries. Remarkably, our findings indicate that taking into account non-pairwise interactions might increase the Positive Predictive Value up to + 11.5%. CONCLUSION: Nfinder is the first robust and automatic method for estimating neighboring cells in 2D and 3D based only on nuclear markers and without any free parameters. Using this tool, we found that taking non-pairwise interactions into account improves the detection performance significantly. We believe that using our method might improve the effectiveness of other workflows to study cell-cell interactions from microscopy images. Finally, we also provide a reference implementation in Python and an easy-to-use napari plugin.


Asunto(s)
Arabidopsis , Drosophila melanogaster , Animales , Caenorhabditis elegans , Microscopía/métodos , Núcleo Celular/metabolismo , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
5.
J Opt Soc Am A Opt Image Sci Vis ; 40(4): C8-C15, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37132946

RESUMEN

Background estimation is the first step in quantitative analysis of images. It has an impact on all subsequent analyses, in particular for segmentation and calculation of ratiometric quantities. Most methods recover only a single value such as the median or yield a biased estimation in non-trivial cases. We introduce, to our knowledge, the first method to recover an unbiased estimation of background distribution. It leverages the lack of local spatial correlation in background pixels to robustly select a subset that accurately represents the background. The resulting background distribution can be used to test for foreground membership of individual pixels or estimate confidence intervals in derived quantities.

6.
J Mol Biol ; 435(16): 168153, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37210029

RESUMEN

Viral factories of liquid-like nature serve as sites for transcription and replication in most viruses. The respiratory syncytial virus factories include replication proteins, brought together by the phosphoprotein (P) RNA polymerase cofactor, present across non-segmented negative stranded RNA viruses. Homotypic liquid-liquid phase separation of RSV-P is governed by an α-helical molten globule domain, and strongly self-downmodulated by adjacent sequences. Condensation of P with the nucleoprotein N is stoichiometrically tuned, defining aggregate-droplet and droplet-dissolution boundaries. Time course analysis show small N-P nuclei gradually coalescing into large granules in transfected cells. This behavior is recapitulated in infection, with small puncta evolving to large viral factories, strongly suggesting that P-N nucleation-condensation sequentially drives viral factories. Thus, the tendency of P to undergo phase separation is moderate and latent in the full-length protein but unleashed in the presence of N or when neighboring disordered sequences are deleted. This, together with its capacity to rescue nucleoprotein-RNA aggregates suggests a role as a "solvent-protein".


Asunto(s)
Nucleoproteínas , Virus Sincitial Respiratorio Humano , Compartimentos de Replicación Viral , Proteínas Estructurales Virales , ARN Polimerasas Dirigidas por ADN/metabolismo , Nucleoproteínas/metabolismo , Virus Sincitial Respiratorio Humano/metabolismo , Virus Sincitial Respiratorio Humano/fisiología , Compartimentos de Replicación Viral/metabolismo , Replicación Viral , Proteínas Estructurales Virales/metabolismo , Humanos
7.
J Cell Sci ; 135(1)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34859817

RESUMEN

Smaug is a conserved translational regulator that binds numerous mRNAs, including nuclear transcripts that encode mitochondrial enzymes. Smaug orthologs form cytosolic membrane-less organelles (MLOs) in several organisms and cell types. We have performed single-molecule fluorescence in situ hybridization (FISH) assays that revealed that SDHB and UQCRC1 mRNAs associate with Smaug1 bodies in U2OS cells. Loss of function of Smaug1 and Smaug2 (also known as SAMD4A and SAMD4B, respectively) affected both mitochondrial respiration and morphology of the mitochondrial network. Phenotype rescue by Smaug1 transfection depends on the presence of its RNA-binding domain. Moreover, we identified specific Smaug1 domains involved in MLO formation, and found that impaired Smaug1 MLO condensation correlates with mitochondrial defects. Mitochondrial complex I inhibition upon exposure to rotenone, but not strong mitochondrial uncoupling upon exposure to CCCP, rapidly induced the dissolution of Smaug1 MLOs. Metformin and rapamycin elicited similar effects, which were blocked by pharmacological inhibition of AMP-activated protein kinase (AMPK). Finally, we found that Smaug1 MLO dissolution weakens the interaction with target mRNAs, thus enabling their release. We propose that mitochondrial respiration and the AMPK-mTOR balance controls the condensation and dissolution of Smaug1 MLOs, thus regulating nuclear mRNAs that encode key mitochondrial proteins. This article has an associated First Person interview with the first authors of the paper.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Mitocondrias , Proteínas Quinasas Activadas por AMP/genética , Núcleo Celular , Humanos , Hibridación Fluorescente in Situ , Mitocondrias/genética , Serina-Treonina Quinasas TOR/genética
8.
Sci Adv ; 7(50): eabk0882, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34890224

RESUMEN

Imaging molecular patterns in cells by fluorescence micro- or nanoscopy has the potential to relate collective molecular behavior to cellular function. However, spatial and spectroscopic resolution is fundamentally limited by motional blur caused by finite photon fluxes and photobleaching. At physiological temperatures, photochemical reactivity does not only limit imaging at multiple scales but is also toxic to biochemical reactions that maintain cellular organization. Here, we present cryoprotectant-free ultrarapid cryo-arrest directly on a multimodal fluorescence microscope that preserves the out-of-equilibrium molecular organization of living cells. This allows the imaging of dynamic processes before cryo-arrest in combination with precise molecular pattern determination at multiple scales within the same cells under cryo-arrest. We both experimentally and theoretically show that ultrarapid cryo-arrest overcomes the fundamental resolution barrier imposed by motional blur and photochemical reactivity, enabling observation of native molecular distributions and reaction patterns that are not resolvable at physiological temperatures.

9.
Methods Appl Fluoresc ; 9(4)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34633297

RESUMEN

In this work we use lanthanide based NaYF4:Er3+, Yb3+upconversion nanoparticles (UCNP) to detect ppb-level sensitibity of a xanthene dye, Rhodamine B (RB) dye, under NIR excitation. A static energy transfer was observed between the luminescent UCNP energy donors and RB acceptor in aqueous solution for three different sizes of UCNP. No specific covalent functionalization of the UCNPs was performed providing a direct method of detection, particularly promising in natural systems where the interfering fluorescence background is a detrimental limitation to the performance of the detection method. This procedure is a first approach to be applied in estuarine and coastal zone where the high content of suspended particulate matter prevents the detection of tracers.

10.
ACS Sens ; 6(7): 2642-2653, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34191492

RESUMEN

Understanding signal propagation across biological networks requires to simultaneously monitor the dynamics of several nodes to uncover correlations masked by inherent intercellular variability. To monitor the enzymatic activity of more than two components over short time scales has proven challenging. Exploiting the narrow spectral width of homo-FRET-based biosensors, up to three activities can be imaged through fluorescence polarization anisotropy microscopy. We introduce Caspase Activity Sensor by Polarization Anisotropy Multiplexing (CASPAM) a single-plasmid triple-modality reporter of key nodes of the apoptotic network. Apoptosis provides an ideal molecular framework to study interactions between its three composing pathways (intrinsic, extrinsic, and effector). We characterized the biosensor performance and demonstrated the advantages that equimolar expression has in both simplifying experimental procedure and reducing observable variation, thus enabling robust data-driven modeling. Tools like CASPAM become essential to analyze molecular pathways where multiple nodes need to be simultaneously monitored.


Asunto(s)
Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Anisotropía , Caspasas/genética , Microscopía Fluorescente
12.
Sci Rep ; 11(1): 6607, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758327

RESUMEN

Gastrulation is a key event in animal embryogenesis during which germ layer precursors are rearranged and the embryonic axes are established. Cell polarization is essential during gastrulation, driving asymmetric cell division, cell movements, and cell shape changes. The furry (fry) gene encodes an evolutionarily conserved protein with a wide variety of cellular functions, including cell polarization and morphogenesis in invertebrates. However, little is known about its function in vertebrate development. Here, we show that in Xenopus, Fry plays a role in morphogenetic processes during gastrulation, in addition to its previously described function in the regulation of dorsal mesoderm gene expression. Using morpholino knock-down, we demonstrate a distinct role for Fry in blastopore closure and dorsal axis elongation. Loss of Fry function drastically affects the movement and morphological polarization of cells during gastrulation and disrupts dorsal mesoderm convergent extension, responsible for head-to-tail elongation. Finally, we evaluate a functional interaction between Fry and NDR1 kinase, providing evidence of an evolutionarily conserved complex required for morphogenesis.


Asunto(s)
Movimiento Celular , Gastrulación , Proteínas Represoras/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Femenino , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/genética , Proteínas de Xenopus/genética , Xenopus laevis
13.
Phys Rev E ; 104(6-1): 064410, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35030833

RESUMEN

Apoptosis is a mechanism of programmed cell death in which cells engage in a controlled demolition and prepare to be digested without damaging their environment. In normal conditions, apoptosis is repressed until it is irreversibly induced by an appropriate signal. In adult organisms, apoptosis is a natural way to dispose of damaged cells and its disruption or excess is associated with cancer and autoimmune diseases. Apoptosis is regulated by a complex signaling network controlled by caspases, specialized enzymes that digest essential cellular components and promote the degradation of genomic DNA. In this work, we propose an effective description of the signaling network focused on caspase-3 as a readout of cell fate. We integrate intermediate network interactions into a nonlinear feedback function acting on caspase-3 and introduce the effect of pro-apoptotic stimuli and regulatory elements as a saturating activation function. We show that activation dynamics in the theory is similar to previously reported experimental results. We compute bifurcation diagrams and obtain cell fate maps describing how stimulus intensity and feedback strength affect cell survival and death fates. These fates overlap within a bistable region that depends on total caspase concentration, regulatory elements, and feedback nonlinearity. We study a strongly nonlinear regime to obtain analytical expressions for bifurcation curves and fate map boundaries. For a broad range of parameters, strong stimuli can induce an irreversible switch to the death fate. We use the theory to explore dynamical stimulation conditions and determine how cell fate depends on stimulation temporal patterns. This analysis predicts a critical relation between transient stimuli intensity and duration to trigger irreversible apoptosis. We derive an analytical expression for this critical relation, valid for short stimuli. Our description provides distinct predictions and offers a framework to study how this signaling network processes different stimuli to make a cell fate decision.


Asunto(s)
Apoptosis , Modelos Biológicos , Transducción de Señal
14.
Appl Opt ; 59(13): D89-D94, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32400629

RESUMEN

The development of light-sheet fluorescence microscopy has been a revolution for developmental biology as it allows long-term imaging during embryonic development. An important reason behind the quick adoption has been the availability of open hardware alternatives. In this work, we present a robust and compact version of a light-sheet fluorescence microscope that is easy to assemble and requires little to no maintenance. An important aspect of the design is that the illumination unit consists of reflective elements, thereby reducing chromatic aberrations an order of magnitude as compared to refractive counterparts.


Asunto(s)
Drosophila/embriología , Embrión de Mamíferos/embriología , Microscopía Fluorescente/instrumentación , Imagen Óptica/instrumentación , Imagen de Lapso de Tiempo/instrumentación , Animales , Biología Evolutiva , Desarrollo Embrionario , Factores de Tiempo
15.
Sci Rep ; 10(1): 5591, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32221383

RESUMEN

Biological systems are spatially organized. This microscopic heterogeneity has been shown to produce emergent complex behaviors such as bistability. Even though the connection between spatiality and dynamic response is essential to understand biological output, its robustness and extent has not been sufficiently explored. This work focuses on a previously described system which is composed of two monostable modules acting on different cellular compartments and sharing species through linear shuttling reactions. One of the two main purposes of this paper is to quantify the frequency of occurrence of bistability throughout the parameter space and to identify which parameters and in which value ranges control the emergence and the properties of bistability. We found that a very small fraction of the sampled parameter space produced a bistable response. Most importantly, shuttling parameters were among the most influential ones to control this property. The other goal of this paper is to simplify the same system as much as possible without losing compartment-induced bistability. This procedure provided a simplified model that still connects two monostable systems by a reduced set of linear shuttling reactions that circulates all the species around the two compartments. Bistable systems are one of the main building blocks of more complex behaviors such as oscillations, memory, and digitalization. Therefore, we expect that the proposed minimal system provides insight into how these behaviors can arise from compartmentalization.

16.
Front Cell Dev Biol ; 8: 615759, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33415111

RESUMEN

Cell migration has been a subject of study in a broad variety of biological systems, from morphogenetic events during development to cancer progression. In this work, we describe single-cell movement in a modular framework from which we simulate the collective behavior of glioblastoma cells, the most prevalent and malignant primary brain tumor. We used the U87 cell line, which can be grown as a monolayer or spatially closely packed and organized in 3D structures called spheroids. Our integrative model considers the most relevant mechanisms involved in cell migration: chemotaxis of attractant factor, mechanical interactions and random movement. The effect of each mechanism is integrated into the overall probability of the cells to move in a particular direction, in an automaton-like approach. Our simulations fit and reproduced the emergent behavior of the spheroids in a set of migration assays where single-cell trajectories were tracked. We also predicted the effect of migration inhibition on the colonies from simple experimental characterization of single treated cell tracks. The development of tools that allow complementing molecular knowledge in migratory cell behavior is relevant for understanding essential cellular processes, both physiological (such as organ formation, tissue regeneration among others) and pathological perspectives. Overall, this is a versatile tool that has been proven to predict individual and collective behavior in U87 cells, but that can be applied to a broad variety of scenarios.

17.
Arch Toxicol ; 93(5): 1401-1415, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30778631

RESUMEN

Age-related macular degeneration (AMD) is a multifactorial retinal disease characterized by a progressive loss of central vision. Retinal pigment epithelium (RPE) degeneration is a critical event in AMD. It has been associated to A2E accumulation, which sensitizes RPE to blue light photodamage. Mitochondrial quality control mechanisms have evolved to ensure mitochondrial integrity and preserve cellular homeostasis. Particularly, mitochondrial dynamics involve the regulation of mitochondrial fission and fusion to preserve a healthy mitochondrial network. The present study aims to clarify the cellular and molecular mechanisms underlying photodamage-induced RPE cell death with particular focus on the involvement of defective mitochondrial dynamics. Light-emitting diodes irradiation (445 ± 18 nm; 4.43 mW/cm2) significantly reduced the viability of both unloaded and A2E-loaded human ARPE-19 cells and increased reactive oxygen species production. A2E along with blue light, triggered apoptosis measured by MC540/PI-flow cytometry and activated caspase-3. Blue light induced mitochondrial fusion/fission imbalance towards mitochondrial fragmentation in both non-loaded and A2E-loaded cells which correlated with the deregulation of mitochondria-shaping proteins level (OPA1, DRP1 and OMA1). To our knowledge, this is the first work reporting that photodamage causes mitochondrial dynamics deregulation in RPE cells. This process could possibly contribute to AMD pathology. Our findings suggest that the regulation of mitochondrial dynamics may be a valuable strategy for treating retinal degeneration diseases, such as AMD.


Asunto(s)
Luz/efectos adversos , Degeneración Macular/patología , Epitelio Pigmentado de la Retina/patología , Retinoides/metabolismo , Apoptosis/fisiología , Línea Celular , Humanos , Degeneración Macular/etiología , Dinámicas Mitocondriales/fisiología , Especies Reactivas de Oxígeno/metabolismo , Epitelio Pigmentado de la Retina/citología
18.
Redox Biol ; 19: 210-217, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30176560

RESUMEN

In order to overcome intercellular variability and thereby effectively assess signal propagation in biological networks it is imperative to simultaneously quantify multiple biological observables in single living cells. While fluorescent biosensors have been the tool of choice to monitor the dynamics of protein interaction and enzymatic activity, co-measuring more than two of them has proven challenging. In this work, we designed three spectrally separated anisotropy-based Förster Resonant Energy Transfer (FRET) biosensors to overcome this difficulty. We demonstrate this principle by monitoring the activation of extrinsic, intrinsic and effector caspases upon apoptotic stimulus. Together with modelling and simulations we show that time of maximum activity for each caspase can be derived from the anisotropy of the corresponding biosensor. Such measurements correlate relative activation times and refine existing models of biological signalling networks, providing valuable insight into signal propagation.


Asunto(s)
Apoptosis , Caspasas Efectoras/análisis , Microscopía Fluorescente/métodos , Técnicas Biosensibles/métodos , Caspasas Efectoras/metabolismo , Activación Enzimática , Polarización de Fluorescencia/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Células HeLa , Humanos , Transducción de Señal
19.
Cell Syst ; 7(3): 295-309.e11, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30145116

RESUMEN

The proto-oncogenic epidermal growth factor receptor (EGFR) is a tyrosine kinase whose sensitivity to growth factors and signal duration determines cellular behavior. We resolve how EGFR's response to epidermal growth factor (EGF) originates from dynamically established recursive interactions with spatially organized protein tyrosine phosphatases (PTPs). Reciprocal genetic PTP perturbations enabled identification of receptor-like PTPRG/J at the plasma membrane and ER-associated PTPN2 as the major EGFR dephosphorylating activities. Imaging spatial-temporal PTP reactivity revealed that vesicular trafficking establishes a spatially distributed negative feedback with PTPN2 that determines signal duration. On the other hand, single-cell dose-response analysis uncovered a reactive oxygen species-mediated toggle switch between autocatalytically activated monomeric EGFR and the tumor suppressor PTPRG that governs EGFR's sensitivity to EGF. Vesicular recycling of monomeric EGFR unifies the interactions with these PTPs on distinct membrane systems, dynamically generating a network architecture that can sense and respond to time-varying growth factor signals.


Asunto(s)
Membrana Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Retículo Endoplásmico/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Biología Computacional , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Retroalimentación Fisiológica , Humanos , Células MCF-7 , Microscopía Confocal , Modelos Teóricos , Fosforilación , Mapas de Interacción de Proteínas , Transporte de Proteínas , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Transducción de Señal , Análisis de la Célula Individual
20.
ACS Appl Mater Interfaces ; 10(29): 24361-24369, 2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-29989787

RESUMEN

The synthesis and photophysical properties of a tailored Pt(II) complex are presented. The phosphorescence of its monomeric species in homogeneous solutions is quenched by interaction with the solvent and therefore absent even upon deoxygenation. However, aggregation-induced shielding from the environment and suppression of rotovibrational degrees of freedom trigger a phosphorescence turn-on that is not suppressed by molecular oxygen, despite possessing an excited-state lifetime ranging in the microsecond scale. Thus, the photoinduced production of reactive oxygen species is avoided by the suppression of diffusion-controlled Dexter-type energy transfer to triplet molecular oxygen. These aggregates emit with the characteristic green luminescence profile of monomeric complexes, indicating that Pt-Pt or excimeric interactions are negligible. Herein, we show that these aggregates can be used to label a model biomolecule (bovine serum albumin) with a microsecond-range luminescence. The protein stabilizes the aggregates, acting as a carrier in aqueous environments. Despite spectral overlaps, the green phosphorescence can be separated by time-gated detection from the dominant autofluorescence of the protein arising from a covalently bound green fluorophore that emits in the nanosecond range. Interestingly, the aggregates also acted as energy donors able to sensitize the emission of a fraction of the fluorophores bound to the protein. This resulted in a microsecond-range luminescence of the fluorescent acceptors and a shortening of the excited-state lifetime of the phosphorescent aggregates. The process that can be traced by a 1000-fold increase in the acceptor's lifetime mirrors the donor's triplet character. The implications for phosphorescence lifetime imaging are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...