Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 131(20)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34651586

RESUMEN

Neoantigens are now recognized drivers of the antitumor immune response. Recurrent neoantigens, shared among groups of patients, have thus become increasingly coveted therapeutic targets. Here, we report on the data-driven identification of a robustly presented, immunogenic neoantigen that is derived from the combination of HLA-A*01:01 and RAS.Q61K. Analysis of large patient cohorts indicated that this combination applies to 3% of patients with melanoma. Using HLA peptidomics, we were able to demonstrate robust endogenous presentation of the neoantigen in 10 tumor samples. We detected specific reactivity to the mutated peptide within tumor-infiltrating lymphocytes (TILs) from 2 unrelated patients, thus confirming its natural immunogenicity. We further investigated the neoantigen-specific clones and their T cell receptors (TCRs) via a combination of TCR sequencing, TCR overexpression, functional assays, and single-cell transcriptomics. Our analysis revealed a diverse repertoire of neoantigen-specific clones with both intra- and interpatient TCR similarities. Moreover, 1 dominant clone proved to cross-react with the highly prevalent RAS.Q61R variant. Transcriptome analysis revealed a high association of TCR clones with specific T cell phenotypes in response to cognate melanoma, with neoantigen-specific cells showing an activated and dysfunctional phenotype. Identification of recurrent neoantigens and their reactive TCRs can promote "off-the-shelf" precision immunotherapies, alleviating limitations of personalized treatments.


Asunto(s)
Antígenos de Neoplasias/inmunología , Melanoma/inmunología , Proteínas ras/inmunología , Línea Celular Tumoral , Antígenos HLA-A/inmunología , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Proteínas ras/genética
2.
Cell Rep ; 35(13): 109305, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34166618

RESUMEN

The human leukocyte antigen (HLA)-bound viral antigens serve as an immunological signature that can be selectively recognized by T cells. As viruses evolve by acquiring mutations, it is essential to identify a range of presented viral antigens. Using HLA peptidomics, we are able to identify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-derived peptides presented by highly prevalent HLA class I (HLA-I) molecules by using infected cells as well as overexpression of SARS-CoV-2 genes. We find 26 HLA-I peptides and 36 HLA class II (HLA-II) peptides. Among the identified peptides, some are shared between different cells and some are derived from out-of-frame open reading frames (ORFs). Seven of these peptides were previously shown to be immunogenic, and we identify two additional immunoreactive peptides by using HLA multimer staining. These results may aid the development of the next generation of SARS-CoV-2 vaccines based on presented viral-specific antigens that span several of the viral genes.


Asunto(s)
Antígenos Virales/inmunología , COVID-19/inmunología , COVID-19/virología , Péptidos/inmunología , SARS-CoV-2/inmunología , Presentación de Antígeno , Antígenos Virales/metabolismo , Vacunas contra la COVID-19 , Línea Celular , Epítopos de Linfocito T/inmunología , Células HEK293 , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Peptidomiméticos , SARS-CoV-2/genética , Linfocitos T
3.
Nature ; 592(7852): 138-143, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33731925

RESUMEN

A variety of species of bacteria are known to colonize human tumours1-11, proliferate within them and modulate immune function, which ultimately affects the survival of patients with cancer and their responses to treatment12-14. However, it is not known whether antigens derived from intracellular bacteria are presented by the human leukocyte antigen class I and II (HLA-I and HLA-II, respectively) molecules of tumour cells, or whether such antigens elicit a tumour-infiltrating T cell immune response. Here we used 16S rRNA gene sequencing and HLA peptidomics to identify a peptide repertoire derived from intracellular bacteria that was presented on HLA-I and HLA-II molecules in melanoma tumours. Our analysis of 17 melanoma metastases (derived from 9 patients) revealed 248 and 35 unique HLA-I and HLA-II peptides, respectively, that were derived from 41 species of bacteria. We identified recurrent bacterial peptides in tumours from different patients, as well as in different tumours from the same patient. Our study reveals that peptides derived from intracellular bacteria can be presented by tumour cells and elicit immune reactivity, and thus provides insight into a mechanism by which bacteria influence activation of the immune system and responses to therapy.


Asunto(s)
Antígenos Bacterianos/análisis , Antígenos Bacterianos/inmunología , Bacterias/inmunología , Antígenos HLA/inmunología , Melanoma/inmunología , Melanoma/microbiología , Péptidos/análisis , Péptidos/inmunología , Presentación de Antígeno , Bacterias/clasificación , Bacterias/genética , Línea Celular Tumoral , Técnicas de Cocultivo , Antígenos HLA/análisis , Humanos , Linfocitos Infiltrantes de Tumor/citología , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/patología , Metástasis de la Neoplasia/inmunología , Filogenia , ARN Ribosómico 16S/genética
4.
Nat Commun ; 11(1): 896, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060274

RESUMEN

Predicting the outcome of immunotherapy treatment in melanoma patients is challenging. Alterations in genes involved in antigen presentation and the interferon gamma (IFNγ) pathway play an important role in the immune response to tumors. We describe here that the overexpression of PSMB8 and PSMB9, two major components of the immunoproteasome, is predictive of better survival and improved response to immune-checkpoint inhibitors of melanoma patients. We study the mechanism underlying this connection by analyzing the antigenic peptide repertoire of cells that overexpress these subunits using HLA peptidomics. We find a higher response of patient-matched tumor infiltrating lymphocytes against antigens diferentially presented after immunoproteasome overexpression. Importantly, we find that PSMB8 and PSMB9 expression levels are much stronger predictors of melanoma patients' immune response to checkpoint inhibitors than the tumors' mutational burden. These results suggest that PSMB8 and PSMB9 expression levels can serve as important biomarkers for stratifying melanoma patients for immune-checkpoint treatment.


Asunto(s)
Melanoma/inmunología , Melanoma/terapia , Complejo de la Endopetidasa Proteasomal/genética , Presentación de Antígeno , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/inmunología , Humanos , Inmunoterapia , Interferón gamma/genética , Interferón gamma/inmunología , Melanoma/diagnóstico , Melanoma/genética , Pronóstico , Complejo de la Endopetidasa Proteasomal/inmunología
5.
7.
Cancer Discov ; 8(11): 1366-1375, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30209080

RESUMEN

The quest for tumor-associated antigens (TAA) and neoantigens is a major focus of cancer immunotherapy. Here, we combine a neoantigen prediction pipeline and human leukocyte antigen (HLA) peptidomics to identify TAAs and neoantigens in 16 tumors derived from seven patients with melanoma and characterize their interactions with their tumor-infiltrating lymphocytes (TIL). Our investigation of the antigenic and T-cell landscapes encompassing the TAA and neoantigen signatures, their immune reactivity, and their corresponding T-cell identities provides the first comprehensive analysis of cancer cell T-cell cosignatures, allowing us to discover remarkable antigenic and TIL similarities between metastases from the same patient. Furthermore, we reveal that two neoantigen-specific clonotypes killed 90% of autologous melanoma cells, both in vitro and in vivo, showing that a limited set of neoantigen-specific T cells may play a central role in melanoma tumor rejection. Our findings indicate that combining HLA peptidomics with neoantigen predictions allows robust identification of targetable neoantigens, which could successfully guide personalized cancer immunotherapies.Significance: As neoantigen targeting is becoming more established as a powerful therapeutic approach, investigating these molecules has taken center stage. Here, we show that a limited set of neoantigen-specific T cells mediates tumor rejection, suggesting that identifying just a few antigens and their corresponding T-cell clones could guide personalized immunotherapy. Cancer Discov; 8(11); 1366-75. ©2018 AACR. This article is highlighted in the In This Issue feature, p. 1333.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos de Neoplasias/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/inmunología , Linfocitos T/inmunología , Animales , Antígenos de Neoplasias/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Melanoma/metabolismo , Melanoma/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Linfocitos T/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Oncotarget ; 9(58): 31264-31277, 2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-30131853

RESUMEN

Neurofibromin 1 (NF1), a tumor suppressor that negatively regulates RAS through its GTPase activity, is highly mutated in various types of sporadic human cancers, including melanoma. However, the binding partners of NF1 and the pathways in which it is involved in melanoma have not been characterized in an in depth manner. Utilizing a mass spectrometry analysis of NF1 binding partners, we revealed Calpain1 (CAPN1), a calcium-dependent neutral cysteine protease, as a novel NF1 binding partner that regulates NF1 degradation in melanoma cells. ShRNA-mediated knockdown of CAPN1 or treatment with a CAPN1 inhibitor stabilizes NF1 protein levels, downregulates AKT signaling and melanoma cell growth. Combination treatment of Calpain inhibitor I with MEKi Trametinib in different melanoma cells is more effective in reducing melanoma cell growth compared to treatment with Trametinib alone, suggesting that this combination may have a therapeutic potential in melanoma. This novel mechanism for regulating NF1 in melanoma provides a molecular basis for targeting CAPN1 in order to stabilize NF1 levels and, in doing so, suppressing Ras activation; this mechanism can be exploited therapeutically in melanoma and other cancers.

9.
Sci Rep ; 8(1): 653, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29330521

RESUMEN

Analysis of 501 melanoma exomes revealed RGS7, which encodes a GTPase-accelerating protein (GAP), to be a tumor-suppressor gene. RGS7 was mutated in 11% of melanomas and was found to harbor three recurrent mutations (p.R44C, p.E383K and p.R416Q). Structural modeling of the most common recurrent mutation of the three (p.R44C) predicted that it destabilizes the protein due to the loss of an H-bond and salt bridge network between the mutated position and the serine and aspartic acid residues at positions 58 as 61, respectively. We experimentally confirmed this prediction showing that the p.R44C mutant protein is indeed destabilized. We further show RGS7 p.R44C has weaker catalytic activity for its substrate Gαo, thus providing a dual mechanism for its loss of function. Both of these effects are expected to contribute to loss of function of RGS7 resulting in increased anchorage-independent growth, migration and invasion of melanoma cells. By mutating position 56 in the R44C mutant from valine to cysteine, thereby enabling the formation of a disulfide bridge between the two mutated positions, we slightly increased the catalytic activity and reinstated protein stability, leading to the rescue of RGS7's function as a tumor suppressor. Our findings identify RGS7 as a novel melanoma driver and point to the clinical relevance of using strategies to stabilize the protein and, thereby, restore its function.


Asunto(s)
Melanoma/genética , Mutación , Proteínas RGS/química , Proteínas RGS/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Disulfuros/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Humanos , Enlace de Hidrógeno , Melanoma/metabolismo , Modelos Moleculares , Invasividad Neoplásica , Conformación Proteica , Estabilidad Proteica , Proteínas RGS/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...