Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 13(9)2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34564601

RESUMEN

Standardization and validation of alternative cell lysis methods used for quantifying total cyanotoxins is needed to improve laboratory response time goals for total cyanotoxin analysis. In this study, five cell lysis methods (i.e., probe sonication, microwave, freeze-thaw, chemical lysis with Abraxis QuikLyseTM, and chemical lysis with copper sulfate) were assessed using laboratory-cultured Microcystis aeruginosa (M. aeruginosa) cells. Methods were evaluated for destruction of cells (as determined by optical density of the sample) and recovery of total microcystin-LR (MC-LR) using three M. aeruginosa cell densities (i.e., 1 × 105 cells/mL (low-density), 1 × 106 cells/mL (medium-density), and 1 × 107 cells/mL (high-density)). Of the physical lysis methods, both freeze-thaw (1 to 5 cycles) and pulsed probe sonication (2 to 10 min) resulted in >80% destruction of cells and consistent (>80%) release and recovery of intracellular MC-LR. Microwave (3 to 5 min) did not demonstrate the same decrease in optical density (<50%), although it provided effective release and recovery of >80% intracellular MC-LR. Abraxis QuikLyseTM was similarly effective for intracellular MC-LR recovery across the different M. aeruginosa cell densities. Copper sulfate (up to 500 mg/L Cu2+) did not lyse cells nor release intracellular MC-LR within 20 min. None of the methods appeared to cause degradation of MC-LR. Probe sonication, microwave, and Abraxis QuikLyseTM served as rapid lysis methods (within minutes) with varying associated costs, while freeze-thaw provided a viable, low-cost alternative if time permits.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Cultivadas/efectos de los fármacos , Microcistinas/química , Microcistinas/toxicidad , Microcystis/química , Pruebas de Toxicidad/métodos
2.
Toxins (Basel) ; 12(5)2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32443714

RESUMEN

Oxidation processes can provide an effective barrier to eliminate cyanotoxins by damaging cyanobacteria cell membranes, releasing intracellular cyanotoxins, and subsequently oxidizing these toxins (now in extracellular form) based on published reaction kinetics. In this work, cyanobacteria cells from two natural blooms (from the United States and Canada) and a laboratory-cultured Microcystis aeruginosa strain were treated with chlorine, monochloramine, chlorine dioxide, ozone, and potassium permanganate. The release of microcystin was measured immediately after oxidation (t ≤ 20 min), and following oxidant residual quenching (stagnation times = 96 or 168 h). Oxidant exposures (CT) were determined resulting in complete release of intracellular microcystin following chlorine (21 mg-min/L), chloramine (72 mg-min/L), chlorine dioxide (58 mg-min/L), ozone (4.1 mg-min/L), and permanganate (391 mg-min/L). Required oxidant exposures using indigenous cells were greater than lab-cultured Microcystis. Following partial oxidation of cells (oxidant exposures ≤ CT values cited above), additional intracellular microcystin and dissolved organic carbon (DOC) were released while the samples remained stagnant in the absence of an oxidant (>96 h after quenching). The delayed release of microcystin from partially oxidized cells has implications for drinking water treatment as these cells may be retained on a filter surface or in solids and continue to slowly release cyanotoxins and other metabolites into the finished water.


Asunto(s)
Cianobacterias/efectos de los fármacos , Agua Potable/microbiología , Floraciones de Algas Nocivas/efectos de los fármacos , Microcistinas/metabolismo , Oxidantes/farmacología , Microbiología del Agua , Purificación del Agua , Cianobacterias/metabolismo , Cinética , Oxidación-Reducción
3.
Water Res ; 154: 171-179, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30797125

RESUMEN

Early detection of harmful cyanobacterial blooms allows identification of potential risk and appropriate selection of treatment techniques to prevent exposure in recreational water bodies and drinking water supplies. Here, luminescence-based adenosine triphosphate (ATP) analysis was applied to monitor and treat cultured and naturally occurring cyanobacteria cells. When evaluating lab-cultured Microcystis aeruginosa, ATP concentrations (≤252,000 pg/mL) had improved sensitivity and correlated well (R2 = 0.969) with optical density measurements at 730 nm (OD730; ≤0.297 cm-1). Following one year of monitoring of a surface water supply, ATP concentrations (≤2000 pg/mL) correlated (R2 = 0.791) with chlorophyll-a concentrations (≤50 µg/L). A preliminary early warning threshold of 175 pg ATP/mL corresponded with 5 µg/L chlorophyll-a to initiate increased monitoring (e.g., of cyanotoxins). Following oxidation processes (i.e., chlorine, chloramine, ozone, permanganate), ATP was demonstrated as an indicator of cell lysis and a threshold value of <100 pg/mL was recommended for complete release of intracellular cyanotoxins. ATP was also used to assess efficacy of copper (Cu(II)) treatment on cyanobacteria-laden surface water. While 24-h exposure to 2.5 mg Cu(II)/L did not impact chlorophyll-a, ATP decreased from 13,500 to 128 pg/mL indicating metabolic activity was minimized. Ultimately, ATP analysis holds promise for early detection and mitigation of potentially harmful algal blooms based on superior sensitivity, independence from cell morphology artifacts, rapid time for analysis (<10 min), and ease of deployment in the field compared to conventional methods.


Asunto(s)
Cianobacterias , Microcystis , Adenosina Trifosfato , Cloro , Floraciones de Algas Nocivas
4.
Water Res ; 148: 492-503, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30408735

RESUMEN

Point-of-use water treatment technologies can help mitigate risks from drinking water contamination, particularly for metals (and metalloids) that originate in distribution systems (e.g., chromium, lead, copper) or are naturally occurring in private groundwater wells (e.g., arsenic). Here, composite nanofibers of polyacrylonitrile (PAN) with embedded hematite (α-Fe2O3) nanoparticles were synthesized via a single-pot electrospinning synthesis. A core-shell nanofiber composite was also prepared through the subsequent hydrothermal growth of α-Fe2O3 nanostructures on embedded hematite composites. Properties of embedded hematite composites were controlled using electrospinning synthesis variables (e.g., size and loading of embedded α-Fe2O3 nanoparticles), whereas core-shell composites were also tailored via hydrothermal treatment conditions (e.g., soluble iron concentration and duration). Although uptake of Cu(II), Pb(II), Cr(VI), and As(V) was largely independent of the core-shell variables explored, metal uptake on embedded nanofibers increased with α-Fe2O3 loading. Both materials exhibited maximum surface-area-normalized sorption capacities that were comparable to α-Fe2O3 nanoparticle dispersions and exceeded that of a commercial iron oxide based sorbent. Further, both types of composite exhibited strong performance across a range of environmentally relevant pH values (6.0-8.0). Notably, core-shell structures, with a majority of surface accessible α-Fe2O3, performed far better than embedded composites in kinetically limited flow through systems than was anticipated from their relative performance in equilibrium batch systems. Core-shell nanofiber filters also retained much of the durability and flexibility exhibited by embedded nanofibers. Additional tests with authentic groundwater samples demonstrated the ability of the core-shell nanofiber filters to remove simultaneously both As and suspended solids, illustrating their promise as a nano-enabled technology for point-of-use water treatment.


Asunto(s)
Nanofibras , Compuestos Férricos , Metales , Polímeros
5.
Chemosphere ; 200: 248-256, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29494905

RESUMEN

The evolving demands of drinking water treatment necessitate processes capable of removing a diverse suite of contaminants. Biofiltration can employ biotransformation and sorption to remove various classes of chemicals from water. Here, pilot-scale virgin anthracite-sand and previously used biological activated carbon (BAC)-sand dual media filters were operated for ∼250 days to assess removals of 0.4 mg/L ammonia as nitrogen, 50-140 µg/L manganese, and ∼100 ng/L each of trace organic compounds (TOrCs) spiked into pre-ozonated Colorado River water. Anthracite achieved complete nitrification within 200 days and started removing ibuprofen at 85 days. Limited manganese (10%) removal occurred. In contrast, BAC completely nitrified ammonia within 113 days, removed all manganese at 43 days, and exhibited steady state removal of most TOrCs by 140 days. However, during the first 140 days, removal of caffeine, DEET, gemfibrozil, naproxen, and trimethoprim decreased, suggesting a shift from sorption to biotransformation. Acetaminophen and sulfamethoxazole were removed at consistent levels, with complete removal of acetaminophen achieved throughout the study; ibuprofen removal increased with time. When subjected to elevated (1 µg/L) concentrations of TOrCs, BAC removed larger masses of chemicals; with a subsequent decrease and ultimate cease in the TOrCs spike, caffeine, DEET, gemfibrozil, and trimethoprim notably desorbed. By the end of operation, anthracite and BAC exhibited equivalent quantities of biomass measured as adenosine triphosphate, but BAC harbored greater microbial diversity (examined with 16S rRNA sequencing). Improved insight was gained regarding concurrent biotransformation, sorption, and desorption of multiple organic and inorganic contaminants in pilot-scale drinking water biofilters.


Asunto(s)
Biotransformación , Agua Potable/análisis , Filtración/métodos , Compuestos Orgánicos/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Amoníaco/metabolismo , Bacterias/genética , Carbón Orgánico/química , Carbón Mineral , Colorado , Agua Potable/química , Agua Potable/metabolismo , Nitrificación , Compuestos Orgánicos/química , Compuestos Orgánicos/metabolismo , ARN Ribosómico 16S/metabolismo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo
6.
Environ Sci Technol ; 49(3): 1654-63, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25582552

RESUMEN

Titanium dioxide (TiO2) nanofibers with tailored structure and composition were synthesized by electrospinning to optimize photocatalytic treatment efficiency. Nanofibers of controlled diameter (30-210 nm), crystal structure (anatase, rutile, mixed phases), and grain size (20-50 nm) were developed along with composite nanofibers with either surface-deposited or bulk-integrated Au nanoparticle cocatalysts. Their reactivity was then examined in batch suspensions toward model (phenol) and emerging (pharmaceuticals, personal care products) pollutants across various water qualities. Optimized TiO2 nanofibers meet or exceed the performance of traditional nanoparticulate photocatalysts (e.g., Aeroxide P25) with the greatest reactivity enhancements arising from (i) decreasing diameter (i.e., increasing surface area), (ii) mixed phase composition [74/26 (±0.5) % anatase/rutile], and (iii) small amounts (1.5 wt %) of surface-deposited, more so than bulk-integrated, Au nanoparticles. Surface Au deposition consistently enhanced photoactivity by 5- to 10-fold across our micropollutant suite independent of their solution concentration, behavior that we attribute to higher photocatalytic efficiency from improved charge separation. However, the practical value of Au/TiO2 nanofibers was limited by their greater degree of inhibition by solution-phase radical scavengers and higher rate of reactivity loss from surface fouling in nonidealized matrixes (e.g., partially treated surface water). Ultimately, unmodified TiO2 nanofibers appear most promising for use as reactive filtration materials because their performance was less influenced by water quality, although future efforts must increase the strength of TiO2 nanofiber mats to realize such applications.


Asunto(s)
Filtración/instrumentación , Nanofibras/química , Titanio/química , Purificación del Agua/métodos , Catálisis , Oro/química , Nanopartículas del Metal/química , Preparaciones Farmacéuticas/química , Propiedades de Superficie , Contaminantes Químicos del Agua/química , Purificación del Agua/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...