Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Int Soc Sports Nutr ; 20(1): 2236055, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37470428

RESUMEN

Pre-sleep nutrition habits in elite female athletes have yet to be evaluated. A retrospective analysis was performed with 14 NCAA Division I female soccer players who wore a WHOOP, Inc. band - a wearable device that quantifies recovery by measuring sleep, activity, and heart rate metrics through actigraphy and photoplethysmography, respectively - 24 h a day for an entire competitive season to measure sleep and recovery. Pre-sleep food consumption data were collected via surveys every 3 days. Average pre-sleep nutritional intake (mean ± sd: kcals 330 ± 284; cho 46.2 ± 40.5 g; pro 7.6 ± 7.3 g; fat 12 ± 10.5 g) was recorded. Macronutrients and kcals were grouped into high and low categories based upon the 50th percentile of the mean to compare the impact of a high versus low pre-sleep intake on sleep and recovery variables. Sleep duration (p = 0.10, 0.69, 0.16, 0.17) and sleep disturbances (p = 0.42, 0.65, 0.81, 0.81) were not affected by high versus low kcal, PRO, fat, CHO intake, respectively. Recovery (p = 0.81, 0.06, 0.81, 0.92), RHR (p = 0.84, 0.64, 0.26, 0.66), or HRV (p = 0.84, 0.70, 0.76, 0.93) were also not affected by high versus low kcal, PRO, fat, or CHO consumption, respectively. Consuming a small meal before bed may have no impact on sleep or recovery.


Asunto(s)
Fútbol , Humanos , Femenino , Fútbol/fisiología , Calidad del Sueño , Estudios Retrospectivos , Sueño , Atletas
2.
Sports Health ; : 19417381231183709, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37401442

RESUMEN

BACKGROUND: Heart rate variability (HRV), respiratory rate (RR), and resting heart rate (RHR) are common variables measured by wrist-worn activity trackers to monitor health, fitness, and recovery in athletes. Variations in RR are observed in lower-respiratory infections, and preliminary data suggest changes in HRV and RR are linked to early detection of COVID-19 infection in nonathletes. HYPOTHESIS: Wearable technology measuring HRV, RR, RHR, and recovery will be successful for early detection of COVID-19 in NCAA Division I female athletes. STUDY DESIGN: Cohort study. LEVEL OF EVIDENCE: Level 2. METHODS: Female athletes wore WHOOP, Inc. bands through the 2020 to 2021 competitive season. Of the athletes who tested positive for COVID (n = 33), 14 had enough data to be assessed (N = 14; 20.0 ± 1.3 years; 69.8 ± 7.2 kg; 172.0 ± 8.3 cm). Roughly 2 weeks of noninfected days were used to set baseline levels of HRV, RR, recovery, and RHR to compare with -3, -2, and -1 days before a positive COVID-19 result. RESULTS: Increases in RR (P = 0.02) were detected on day -3. RHR (P < 0.01) and RR increased (P < 0.01), while HRV decreased (P < 0.05) on day -1, compared with baseline. Differences were noted in all variables on the day of the positive COVID-19 result: decreased HRV (P < 0.05) and recovery scores (P < 0.01), and increased RHR (P < 0.01) and RR (P < 0.01). CONCLUSION: In female athletes, wearable technology was successful in predicting COVID-19 infection through changes in RR 3 days before a positive test, and also HRV and RHR the day before a positive test. CLINICAL RELEVANCE: Wearable technology may be used, as part of a multifaceted approach, for the early detection of COVID-19 in elite athletes through monitoring of HRV, RR, and RHR for overall team health.

3.
J Int Soc Sports Nutr ; 20(1): 2206386, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37125500

RESUMEN

BACKGROUND: Citrulline may amplify the effects of L-arginine and nitric oxide concentration, which may augment vasodilation and blood flow, thereby enhancing aerobic exercise performance. The purpose of this randomized, double-blind, placebo-controlled crossover study was to investigate effects of L-citrulline + Glutathione on aerobic exercise performance and blood flow in well-trained men. METHODS: Twenty-five males (Mean ± SD; Age: 22.2 ± 2.4 yrs; Height: 177.0 ± 4.8 cm; Weight: 75.3 ± 6.9 kg) were randomly assigned to the L-citrulline + Glutathione (Setria Performance Blend: SPB; L-citrulline [2 g] + glutathione [200 mg], 6 capsules) or placebo (PL; 3.1 g cellulose, 6 capsules) group. Participants performed a maximal oxygen consumption treadmill test to determine peak velocity (PV) and returned after eight days of ingesting either PL or SPB. Three timed treadmill runs to exhaustion (TTE) were performed at 90%, 100%, and 110% PV. Brachial artery blood flow and vessel diameter were assessed using ultrasound at 1-hr prior to exercise (1hrPrEX), after each exercise bout, immediately post-exercise (immediate PEX), and 30 minutes post exercise (30minPEX) at visits 2 and 4. Blood analytes were assessed via venous blood draws at visit 1, visit 3, and 1hrPEX, immediate PEX, and 30minPEX at visits 2 and 4. After a 14-day washout, participants repeated the same procedures, ingesting the opposite treatment. Separate repeated measures ANOVAs were performed for TTE, vessel diameter, blood flow, and blood analytes. RESULTS: Blood flow was significantly augmented 30minPEX (p = 0.04) with SPB in comparison with PL. L-citrulline and L-arginine plasma concentrations were significantly elevated immediately PEX (p = 0.001) and 30-minPEX (p = 0.001) following SPB in comparison to PL. CONCLUSION: Acute ingestion of SPB after eight days may enhance blood flow, L-citrulline, and L-arginine plasma concentrations after high-intensity exercise, which may enhance performance. CLINICAL TRIAL REGISTRATION: [https://clinicaltrials.gov/ct2/show/nct04090138], identifier [NCT04090138].


Asunto(s)
Citrulina , Suplementos Dietéticos , Masculino , Humanos , Adulto Joven , Adulto , Citrulina/farmacología , Estudios Cruzados , Cápsulas , Glutatión , Método Doble Ciego , Arginina/farmacología
4.
J Int Soc Sports Nutr ; 20(1): 2204066, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37221858

RESUMEN

Based on a comprehensive review and critical analysis of the literature regarding the nutritional concerns of female athletes, conducted by experts in the field and selected members of the International Society of Sports Nutrition (ISSN), the following conclusions represent the official Position of the Society: 1. Female athletes have unique and unpredictable hormone profiles, which influence their physiology and nutritional needs across their lifespan. To understand how perturbations in these hormones affect the individual, we recommend that female athletes of reproductive age should track their hormonal status (natural, hormone driven) against training and recovery to determine their individual patterns and needs and peri and post-menopausal athletes should track against training and recovery metrics to determine the individuals' unique patterns. 2. The primary nutritional consideration for all athletes, and in particular, female athletes, should be achieving adequate energy intake to meet their energy requirements and to achieve an optimal energy availability (EA); with a focus on the timing of meals in relation to exercise to improve training adaptations, performance, and athlete health. 3. Significant sex differences and sex hormone influences on carbohydrate and lipid metabolism are apparent, therefore we recommend first ensuring athletes meet their carbohydrate needs across all phases of the menstrual cycle. Secondly, tailoring carbohydrate intake to hormonal status with an emphasis on greater carbohydrate intake and availability during the active pill weeks of oral contraceptive users and during the luteal phase of the menstrual cycle where there is a greater effect of sex hormone suppression on gluconogenesis output during exercise. 4. Based upon the limited research available, we recommend that pre-menopausal, eumenorrheic, and oral contraceptives using female athletes should aim to consume a source of high-quality protein as close to beginning and/or after completion of exercise as possible to reduce exercise-induced amino acid oxidative losses and initiate muscle protein remodeling and repair at a dose of 0.32-0.38 g·kg-1. For eumenorrheic women, ingestion during the luteal phase should aim for the upper end of the range due to the catabolic actions of progesterone and greater need for amino acids. 5. Close to the beginning and/or after completion of exercise, peri- and post-menopausal athletes should aim for a bolus of high EAA-containing (~10 g) intact protein sources or supplements to overcome anabolic resistance. 6. Daily protein intake should fall within the mid- to upper ranges of current sport nutrition guidelines (1.4-2.2 g·kg-1·day-1) for women at all stages of menstrual function (pre-, peri-, post-menopausal, and contraceptive users) with protein doses evenly distributed, every 3-4 h, across the day. Eumenorrheic athletes in the luteal phase and peri/post-menopausal athletes, regardless of sport, should aim for the upper end of the range. 7. Female sex hormones affect fluid dynamics and electrolyte handling. A greater predisposition to hyponatremia occurs in times of elevated progesterone, and in menopausal women, who are slower to excrete water. Additionally, females have less absolute and relative fluid available to lose via sweating than males, making the physiological consequences of fluid loss more severe, particularly in the luteal phase. 8. Evidence for sex-specific supplementation is lacking due to the paucity of female-specific research and any differential effects in females. Caffeine, iron, and creatine have the most evidence for use in females. Both iron and creatine are highly efficacious for female athletes. Creatine supplementation of 3 to 5 g per day is recommended for the mechanistic support of creatine supplementation with regard to muscle protein kinetics, growth factors, satellite cells, myogenic transcription factors, glycogen and calcium regulation, oxidative stress, and inflammation. Post-menopausal females benefit from bone health, mental health, and skeletal muscle size and function when consuming higher doses of creatine (0.3 g·kg-1·d-1). 9. To foster and promote high-quality research investigations involving female athletes, researchers are first encouraged to stop excluding females unless the primary endpoints are directly influenced by sex-specific mechanisms. In all investigative scenarios, researchers across the globe are encouraged to inquire and report upon more detailed information surrounding the athlete's hormonal status, including menstrual status (days since menses, length of period, duration of cycle, etc.) and/or hormonal contraceptive details and/or menopausal status.


Asunto(s)
Creatina , Deportes , Femenino , Humanos , Masculino , Progesterona , Atletas , Aminoácidos
5.
J Strength Cond Res ; 35(11): 3213-3217, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34474434

RESUMEN

ABSTRACT: Cabre, HE, Greenwalt, CE, Gould, LM, Hirsch, KR, Blue, MNM, and Smith-Ryan, AE. Exploring the "Athlete's Paradox": Division I cross-country runners demonstrate similar muscle characteristics to recreationally trained young adults. J Strength Cond Res 35(11): 3213-3217, 2021-Endurance training can influence body composition and muscle characteristics. Endurance athletes have demonstrated elevated intramuscular fat (IMF), yet individuals with greater body fat also demonstrate elevated IMF. The purpose of this study was to examine differences in muscle characteristics (echo intensity [EI] and muscle cross-sectional area [mCSA]) and body composition between Division I collegiate athletes and college-age adults matched for percent fat (%fat). Thirty cross-country athletes (XC) and 30 normal-weight (NW) recreationally active college students (male athletes: n = 30; female athletes: n = 30; mean ± SD: age: 19.2 ± 1.1 years; body mass: 61.7 ± 8.7 kg; %fat: 18.0 ± 5.2%) underwent a panoramic ultrasound scan of the vastus lateralis to evaluate EI and mCSA. A full-body dual-energy x-ray absorptiometry scan was used to assess fat mass (FM), lean mass (LM), and %fat. Independent t-tests were used to evaluate mCSA, EI, and body composition. Significance level was set at ≤ 0.05. There were no significant differences between the XC and NW cohorts in mCSA (mean difference [MD; XC - NW], -1.30 ± -0.40 cm3; p = 0.340) or EI (MD: 3.97 ± 2.66 a.u.; p = 0.478). Body composition was not different between the groups: FM (MD: -0.14 ± -0.54 kg; p = 0.848), LM (-3.07 ± 1.25 kg; p = 0.268), or bone mineral content (-0.21 ± 0.03 kg; p = 0.120). There were also no significant differences for any outcome variables when stratified by male athletes (p = 0.097-0.468) or female athletes (p = 0.055-0.700). These results suggest that XC athletes may have similar muscle characteristics to NW individuals when matched for %fat. Understanding and tracking muscle characteristics in XC athletes may be important for performance, injury prevention, and the transition to retirement.


Asunto(s)
Atletas , Composición Corporal , Absorciometría de Fotón , Adolescente , Adulto , Composición Corporal/fisiología , Femenino , Humanos , Masculino , Músculo Cuádriceps/diagnóstico por imagen , Ultrasonografía , Adulto Joven
6.
Eur J Appl Physiol ; 121(12): 3297-3311, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34427732

RESUMEN

High-intensity interval training (HIIT) promotes positive cardiometabolic and body composition changes. Essential amino acids (EAA) may support changes associated with HIIT, but evaluation of potential synergistic effects is lacking. The purpose of this study was to compare independent and combined effects of HIIT and EAA on total body composition and metabolism in men and women considered overweight/obese; an exploratory aim was to evaluate the modulatory effects of sex. Sixty-six healthy adults (50% female; Age: 36.7 ± 6.0 years; BMI: 32.0 ± 4.2 kg/m2) completed 8 weeks of: (1) HIIT, 2 days/weeks; (2) EAA supplementation, 3.6 g twice daily; (3) HIIT + EAA; or (4) control. Body composition, resting metabolic rate (RMR), substrate metabolism (respiratory exchange ratio; RER), and cardiorespiratory fitness were measured at baseline, 4 weeks, and 8 weeks; cardiometabolic blood markers were measured at baseline and 8 weeks. Differences between groups were assessed by linear mixed models covaried for baseline values, followed by 95% confidence intervals (CI) on adjusted mean change scores. There were no significant changes in body composition (p > 0.05) for any group. Changes in RER, but not RMR, occurred with HIIT (mean change; [95% CI]: - 0.04; [- 0.07, - 0.02]) and EAA (- 0.03; [- 0.06, - 0.01]) after 8 weeks. Cardiorespiratory fitness increased following 8 weeks of HIIT (+ 5.1 ml/kg/min [3.3,6.8]) and HIIT + EAA (+ 4.1 ml/kg/min [1.0,6.4]). Changes with HIIT + EAA were not significantly different from HIIT. There were no changes in cardiometabolic markers (p > 0.05) and no sex interaction (p > 0.05). HIIT is efficacious for promoting positive changes in cardiorespiratory fitness and resting substrate metabolism in adults considered overweight/obese. Addition of EAA did not significantly enhance HIIT-induced adaptations. ClinicalTrials.gov ID#NCT04080102.


Asunto(s)
Aminoácidos Esenciales/administración & dosificación , Entrenamiento de Intervalos de Alta Intensidad , Obesidad/metabolismo , Sobrepeso/metabolismo , Adulto , Biomarcadores/sangre , Composición Corporal , Índice de Masa Corporal , Capacidad Cardiovascular , Metabolismo Energético , Femenino , Humanos , Masculino , Persona de Mediana Edad
7.
Br J Nutr ; : 1-13, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34392839

RESUMEN

Understanding the effects of acute feeding on body composition and metabolic measures is essential to the translational component and practical application of measurement and clinical use. To investigate the influence of acute feeding on the validity of dual-energy X-ray absorptiometry (DXA), a four-compartment model (4C) and indirect calorimetry metabolic outcomes, thirty-nine healthy young adults (n 19 females; age: 21·8 (sd 3·1) years, weight; 71·5 (sd 10·0) kg) participated in a randomised cross-over study. Subjects were provided one of four randomised meals on separate occasions (high carbohydrate, high protein, ad libitum or fasted baseline) prior to body composition and metabolic assessments. Regardless of macronutrient content, acute feeding increased DXA percent body fat (%fat) for the total sample and females (average constant error (CE):-0·30 %; total error (TE): 2·34 %), although not significant (P = 0·062); the error in males was minimal (CE: 0·11 %; TE: 0·86 %). DXA fat mass (CE: 0·26 kg; TE: 0·75 kg) and lean mass (LM) (CE: 0·83 kg; TE: 1·23 kg) were not altered beyond measurement error for the total sample. 4C %fat was significantly impacted from all acute feedings (avg CE: 0·46 %; TE: 3·7 %). 4C fat mass (CE: 0·71 kg; TE: 3·38 kg) and fat-free mass (CE: 0·55 kg; TE: 3·05 kg) exceeded measurement error for the total sample. RMR was increased for each feeding condition (TE: 1666·9 kJ/d; 398 kcal/d). Standard pre-testing fasting guidelines may be important when evaluating DXA and 4C %fat, whereas additional DXA variables (fat mass and LM) may not be significantly impacted by an acute meal. Measuring body composition via DXA under less stringent pre-testing guidelines may be valid and increase feasibility of testing in clinical settings.

8.
Physiol Rep ; 9(1): e14655, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33369879

RESUMEN

The purpose of this study was to compare the independent and combined effects of high-intensity interval training (HIIT) and essential amino acids (EAA) on lean mass, muscle characteristics of the quadriceps, and 24-hr whole-body protein turnover (WBPT) in overweight and obese adults. An exploratory aim was to evaluate potential modulatory effects of sex. Sixty-six adults (50% female; Age: 36.7 ± 6.0 yrs; %BF: 36.0 ± 7.8%) were assigned to 8 wks of: (a) HIIT, 2 days/wk; (b) EAA supplementation, 3.6 g twice daily; (c) HIIT + EAA; or (d) control. At baseline, 4 wks, and 8 wks, total body, thigh LM and muscle characteristics were measured via dual-energy x-ray absorptiometry and B-mode ultrasound, respectively. In a subsample, changes in WBPT was measured using [N15 ]alanine. Differences between groups were assessed using linear mixed models adjusted for baseline values, followed by 95% confidence intervals on adjusted mean change scores (Δ). HIIT and HIIT + EAA improved thigh LM (Δ: +0.17 ± 0.05 kg [0.08, 0.27]; +0.22 ± 0.05 kg [0.12,0.31]) and vastus lateralis cross-sectional area (Δ: +2.73 ± 0.52 cm2 [1.69,3.77]; +2.64 ± 0.53 cm2 [1.58,3.70]), volume (Δ: +54.50 ± 11.69 cm3 [31.07, 77.92]; +62.39 ± 12.05 cm3 [38.26, 86.52]), and quality (Δ: -5.46 ± 2.68a.u. [-10.84, -0.09]; -7.97 ± 2.76a.u.[-13.49, -2.45]). Protein synthesis, breakdown, and flux were greater with HIIT + EAA and EAA compared to HIIT (p < .05). Sex differences were minimal. Compared to women, men tended to respond more to HIIT, with or without EAA. For women, responses were greater with HIIT + EAA than HIIT. In overweight and obese adults, 8 weeks of HIIT, with or without EAA, improved thigh LM size and quality; EAA may enhance muscular adaptation via increases in protein turnover, supporting greater improvements in muscular size and quality.


Asunto(s)
Aminoácidos Esenciales/administración & dosificación , Entrenamiento de Intervalos de Alta Intensidad , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidad/fisiopatología , Músculo Cuádriceps/metabolismo , Adulto , Femenino , Humanos , Masculino , Sobrepeso/fisiopatología , Orina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...