Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Br J Cancer ; 130(12): 2003-2015, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38622286

RESUMEN

BACKGROUND: Failure of immunotherapy in high-grade serous ovarian cancer (HGSC) may be due to high levels of transforming growth factor-ß (TGF-ß) in ascites or tumour immune microenvironment (TIME). Here, we test whether coordinated blockade of TGF-ß and PD-L1 with bintrafusp alfa (BA) can provoke anti-tumour immune responses in preclinical HGSC models. METHODS: BA is a first-in-class bifunctional inhibitor of TGF-ß and PD-L1, and was tested for effects on overall survival and altered TIME in syngeneic HGSC models. RESULTS: Using a mouse ID8-derived HGSC syngeneic model with IFNγ-inducible PD-L1 expression, BA treatments significantly reduced ascites development and tumour burden. BA treatments depleted TGF-ß and VEGF in ascites, and skewed the TIME towards cytotoxicity compared to control. In the BR5 HGSC syngeneic model, BA treatments increased tumour-infiltrating CD8 T cells with effector memory and cytotoxic markers, as well as cytolytic NK cells. Extended BA treatments in the BR5 model produced ∼50% BA-cured mice that were protected from re-challenge. These BA-cured mice had increased peritoneal T-effector memory and NK cells compared to controls. CONCLUSIONS: Our preclinical studies of BA in advanced ovarian cancer models support further testing of BA as an improved immunotherapy option for patients with advanced ovarian cancer.


Asunto(s)
Antígeno B7-H1 , Células Asesinas Naturales , Neoplasias Ováricas , Factor de Crecimiento Transformador beta , Femenino , Animales , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de los fármacos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Ratones , Factor de Crecimiento Transformador beta/metabolismo , Antígeno B7-H1/antagonistas & inhibidores , Humanos , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Modelos Animales de Enfermedad
2.
Front Immunol ; 14: 1145826, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122758

RESUMEN

Introduction: Sepsis is a result of initial over-activation of the immune system in response to an infection or trauma that results in reduced blood flow and life-threatening end-organ damage, followed by suppression of the immune system that prevents proper clearance of the infection or trauma. Because of this, therapies that not only limit the activation of the immune system early on, but also improve blood flow to crucial organs and reactivate the immune system in late-stage sepsis, may be effective treatments. The tyrosine kinase FES may fulfill this role. FES is present in immune cells and serves to limit immune system activation. We hypothesize that by enhancing FES in early sepsis and inhibiting its effects in late sepsis, the severity and outcome of septic illness can be improved. Methods and analysis: In vitro and in vivo modeling will be performed to determine the degree of inflammatory signaling, cytokine production, and neutrophil extracellular trap (NET) formation that occurs in wild-type (WT) and FES knockout (FES-/- ) mice. Clinically available treatments known to enhance or inhibit FES expression (lorlatinib and decitabine, respectively), will be used to explore the impact of early vs. late FES modulation on outcomes in WT mice. Bioinformatic analysis will be performed to examine FES expression levels in RNA transcriptomic data from sepsis patient cohorts, and correlate FES expression data with clinical outcomes (diagnosis of sepsis, illness severity, hospital length-of-stay). Ethics and dissemination: Ethics approval pending from the Queen's University Health Sciences & Affiliated Teaching Hospitals Research Ethics Board. Results will be disseminated through scientific publications and through lay summaries to patients and families.


Asunto(s)
Trampas Extracelulares , Sepsis , Animales , Ratones , Proteínas Tirosina Quinasas/genética , Transducción de Señal , Sistema Inmunológico
3.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37175499

RESUMEN

Breast cancer (BC) metastasis remains a leading cause of female mortality. Neuropilin-1 (NRP-1) is a glycoprotein receptor that plays ligand-dependent roles in BC. Clinical studies indicate its correlation with metastatic disease; however, its functional role in BC metastasis remains uncertain. CRISPR-Cas9 was used to knockout the NRP-1 gene in MDA-MB-231 BC cells, and the effects on metastasis were determined using an orthotopic mouse engraftment model. NRP-1 expression in knockout cells was rescued using a recombinant cDNA with a silent mutation in the sgRNA target-adjacent PAM sequence. Differentially expressed genes between NRP-1 knockout and control cells were determined using whole-transcriptome sequencing and validated using real-time PCR. NRP-1KO cells showed a pronounced reduction in the metastasis to the lungs. KEGG pathway analysis of the transcriptome data revealed that PI3K and ECM receptor interactions were among the top altered pathways in the NRP-1KO cells. In addition, reduction in metastasis enhancers proteins, Integrin-ß3 and Tenascin-C, and genes CCL20 and FN1 and upregulation of metastasis suppressor genes, ACVRL and GPX3 in NRP-1KO were detected. These findings provide evidence for a functional role for NRP-1 in BC metastasis, supporting further exploration of NRP-1 and the identified genes as targets in treating metastatic BC.


Asunto(s)
Neoplasias , Transducción de Señal , Animales , Femenino , Ratones , Células MDA-MB-231 , Neuropilina-1/genética , Neuropilina-1/metabolismo , Neuropilina-2 , Transducción de Señal/genética , Humanos
4.
Cancer Med ; 12(9): 10908-10916, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36938826

RESUMEN

INTRODUCTION: The cytoskeletal protein ezrin is upregulated in many cancer types and is strongly associated with poor patient outcome. While the clinical and prognostic value of ezrin has been previously evaluated in breast cancer, most studies to date have been conducted in smaller cohorts (less than 500 cases) or have focused on specific disease characteristics. The current study is the largest of its kind to evaluate ezrin both at the protein and mRNA levels in early-stage breast cancer patients using the Nottingham (n = 1094) and METABRIC (n = 1980) cohorts, respectively. RESULTS: High expression of ezrin was significantly associated with larger tumour size (p = 0.027), higher tumour grade (p < 0.001), worse Nottingham Prognostic Index prognostic group (p = 0.011) and HER2-positive status (p = 0.001). High ezrin expression was significantly associated with adverse survival of breast cancer patients (p < 0.001) and remained associated with survival in multivariate Cox-regression analysis (p = 0.018, hazard ratio (HR) = 1.343, 95% confidence interval (CI) = 1.051-1.716) when potentially confounding factors were included. High ezrin expression was significantly associated with adverse survival of patients whose tumours were categorised as receptor (oestrogen receptor (ER), progesterone receptor (PgR) or HER2) positive (p < 0.001) in comparison to those categorised as triple-negative breast cancer (p = 0.889). High expression of ezrin mRNA (VIL2) in the METABRIC cohort was also significantly associated with adverse survival of breast cancer patients (p < 0.001). CONCLUSION: Retrospective analyses show that ezrin is an independent prognostic marker, with higher expression associated with shortened survival in receptor-positive (ER, PgR or HER2) patients. Ezrin expression is associated with more aggressive disease and may have clinical utility as a biomarker of patient prognosis in early-stage breast cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Estudios Retrospectivos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Pronóstico , Receptores de Progesterona , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
5.
Circ Res ; 131(12): 1004-1017, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36321446

RESUMEN

BACKGROUND: Genome-wide association studies have discovered a link between genetic variants on human chromosome 15q26.1 and increased coronary artery disease (CAD) susceptibility; however, the underlying pathobiological mechanism is unclear. This genetic locus contains the FES (FES proto-oncogene, tyrosine kinase) gene encoding a cytoplasmic protein-tyrosine kinase involved in the regulation of cell behavior. We investigated the effect of the 15q26.1 variants on FES expression and whether FES plays a role in atherosclerosis. METHODS AND RESULTS: Analyses of isogenic monocytic cell lines generated by CRISPR (clustered regularly interspaced short palindromic repeats)-mediated genome editing showed that monocytes with an engineered 15q26.1 CAD risk genotype had reduced FES expression. Small-interfering-RNA-mediated knockdown of FES promoted migration of monocytes and vascular smooth muscle cells. A phosphoproteomics analysis showed that FES knockdown altered phosphorylation of a number of proteins known to regulate cell migration. Single-cell RNA-sequencing revealed that in human atherosclerotic plaques, cells that expressed FES were predominately monocytes/macrophages, although several other cell types including smooth muscle cells also expressed FES. There was an association between the 15q26.1 CAD risk genotype and greater numbers of monocytes/macrophage in human atherosclerotic plaques. An animal model study demonstrated that Fes knockout increased atherosclerotic plaque size and within-plaque content of monocytes/macrophages and smooth muscle cells, in apolipoprotein E-deficient mice fed a high fat diet. CONCLUSIONS: We provide substantial evidence that the CAD risk variants at the 15q26.1 locus reduce FES expression in monocytes and that FES depletion results in larger atherosclerotic plaques with more monocytes/macrophages and smooth muscle cells. This study is the first demonstration that FES plays a protective role against atherosclerosis and suggests that enhancing FES activity could be a potentially novel therapeutic approach for CAD intervention.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Proteínas Proto-Oncogénicas c-fes , Animales , Humanos , Ratones , Arterias/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Estudio de Asociación del Genoma Completo , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Proteínas Proto-Oncogénicas c-fes/genética , Proteínas Proto-Oncogénicas c-fes/metabolismo
6.
J Transl Med ; 20(1): 521, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36348405

RESUMEN

BACKGROUND: We reported that PARP-1 regulates genes whose products are crucial for asthma, in part, by controlling STAT6 integrity speculatively through a calpain-dependent mechanism. We wished to decipher the PARP-1/STAT6 relationship in the context of intracellular trafficking and promoter occupancy of the transcription factor on target genes, its integrity in the presence of calpains, and its connection to autophagy. METHODS: This study was conducted using primary splenocytes or fibroblasts derived from wild-type or PARP-1-/- mice and Jurkat T cells to mimic Th2 inflammation. RESULTS: We show that the role for PARP-1 in expression of IL-4-induced genes (e.g. gata-3) in splenocytes did not involve effects on STAT6 phosphorylation or its subcellular trafficking, rather, it influenced its occupancy of gata-3 proximal and distal promoters in the early stages of IL-4 stimulation. At later stages, PARP-1 was crucial for STAT6 integrity as its inhibition, pharmacologically or by gene knockout, compromised the fate of the transcription factor. Calpain-1 appeared to preferentially degrade JAK-phosphorylated-STAT6, which was blocked by calpastatin-mediated inhibition or by genetic knockout in mouse fibroblasts. The STAT6/PARP-1 relationship entailed physical interaction and modification by poly(ADP-ribosyl)ation independently of double-strand-DNA breaks. Poly(ADP-ribosyl)ation protected phosphorylated-STAT6 against calpain-1-mediated degradation. Additionally, our results show that STAT6 is a bonafide substrate for chaperone-mediated autophagy in a selective and calpain-dependent manner in the human Jurkat cell-line. The effects were partially blocked by IL-4 treatment and PARP-1 inhibition. CONCLUSIONS: The results demonstrate that poly(ADP-ribosyl)ation plays a critical role in protecting activated STAT6 during Th2 inflammation, which may be synthetically targeted for degradation by inhibiting PARP-1.


Asunto(s)
Poli ADP Ribosilación , Poli(ADP-Ribosa) Polimerasas , Humanos , Ratones , Animales , Poli(ADP-Ribosa) Polimerasas/metabolismo , Calpaína/genética , Calpaína/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Interleucina-4/farmacología , Interleucina-4/metabolismo , Autofagia , Inflamación , Factor de Transcripción STAT6/metabolismo
7.
Arthritis Res Ther ; 24(1): 148, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729674

RESUMEN

BACKGROUND: Calpains are a family of calcium-dependent thiol proteases that participate in a wide variety of biological activities. In our recent study, calpain is increased in the sera of scleroderma or systemic sclerosis (SSc). However, the role of calpain in interstitial lung disease (ILD) has not been reported. ILD is a severe complication of SSc, which is the leading cause of death in SSc. The pathogenesis of SSc-related ILD remains incompletely understood. This study investigated the role of myeloid cell calpain in SSc-related ILD. METHODS: A novel line of mice with myeloid cell-specific deletion of Capns1 (Capns1-ko) was created. SSc-related ILD was induced in Capns1-ko mice and their wild-type littermates by injection 0.l mL of bleomycin (0.4 mg/mL) for 4 weeks. In a separate experiment, a pharmacological inhibitor of calpain PD150606 (Biomol, USA, 3 mg/kg/day, i.p.) daily for 30 days was given to mice after bleomycin injection on daily basis. At the end of the experiment, the animals were killed, skin and lung tissues were collected for the following analysis. Inflammation, fibrosis and calpain activity and cytokines were assessed by histological examinations and ELISA, and immunohistochemical analyses, western blot analysis and Flow cytometry analysis. RESULTS: Calpain activities increased in SSc-mouse lungs. Both deletion of Capns1 and administration of PD150606 attenuated dermal sclerosis as evidenced by a reduction of skin thickness and reduced interstitial fibrosis and inflammation in bleomycin model of SSc mice. These effects of reduced calpain expression or activity were associated with prevention of macrophage polarization toward M1 phenotype and consequent reduced production of pro-inflammatory cytokines including TNF-α, IL-12 and IL-23 in lung tissues of Capns1-ko mice with bleomycin model of SSc. Furthermore, inhibition of calpain correlated with an increase in the protein levels of PI3K and phosphorylated AKT1 in lung tissues of the bleomycin model of SSc mice. CONCLUSIONS: This study for the first time demonstrates that the role of myeloid cell calpain may be promotion of macrophage M1 polarization and pro-inflammatory responses related PI3K/AKT1 signaling. Thus, myeloid cell calpain may be a potential therapeutic target for bleomycin model of SSc-related ILD.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Esclerodermia Sistémica , Animales , Bleomicina/toxicidad , Calpaína , Citocinas/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Inflamación/patología , Pulmón/patología , Enfermedades Pulmonares Intersticiales/etiología , Macrófagos/metabolismo , Ratones , Células Mieloides/metabolismo , Fenotipo , Fosfatidilinositol 3-Quinasas/metabolismo , Esclerodermia Sistémica/patología
8.
Front Immunol ; 13: 884827, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529885

RESUMEN

The protocol used to induce cell death for generating vaccines from whole tumor cells is a critical consideration that impacts vaccine efficacy. Here we compared how different protocols used to induce cell death impacted protection provided by a prophylactic whole tumor cell vaccine in a mouse melanoma model. We found that melanoma cells exposed to γ-irradiation or lysis combined with UV-irradiation (LyUV) provided better protection against tumor challenge than lysis only or cells exposed to UV-irradiation. Furthermore, we found that the immunoregulatory cytokine, IL-27 enhanced protection against tumor growth in a dose-dependent manner when combined with either LyUV or γ-irradiated whole tumor cell vaccine preparations. Taken together, this data supports the use of LyUV as a potential protocol for developing whole tumor cell prophylactic cancer vaccines. We also showed that IL-27 can be used at low doses as a potent adjuvant in combination with LyUV or γ-irradiation treated cancer cells to improve the protection provided by a prophylactic cancer vaccine in a mouse melanoma model.


Asunto(s)
Vacunas contra el Cáncer , Interleucina-27 , Melanoma , Animales , Vacunas contra el Cáncer/uso terapéutico , Modelos Animales de Enfermedad , Interleucina-27/uso terapéutico , Melanoma/prevención & control , Melanoma/terapia , Ratones
9.
Expert Opin Ther Targets ; 26(3): 217-231, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35225722

RESUMEN

INTRODUCTION: Calpain-1 and calpain-2 are prototypical classical isoforms of the calpain family of calcium-activated cysteine proteases. Their substrate proteins participate in a wide range of cellular processes, including transcription, survival, proliferation, apoptosis, migration, and invasion. Dysregulated calpain activity has been implicated in tumorigenesis, suggesting that calpains may be promising therapeutic targets. AREAS COVERED: This review covers clinical and basic research studies implicating calpain-1 and calpain-2 expression and activity in tumorigenesis and metastasis. We highlight isoform specific functions and provide an overview of substrates and cancer-related signalling pathways affected by calpain-mediated proteolytic cleavage. We also discuss efforts to develop clinically relevant calpain specific inhibitors and spotlight the challenges facing inhibitor development. EXPERT OPINION: Rationale for targeting calpain-1 and calpain-2 in cancer is supported by pre-clinical and clinical studies demonstrating that calpain inhibition has the potential to attenuate carcinogenesis and block metastasis of aggressive tumors. The wide range of substrates and cleavage products, paired with inconsistencies in model systems, underscores the need for more complete understanding of physiological substrates and how calpain cleavage alters their functions in cellular processes. The development of isoform specific calpain inhibitors remains an important goal with therapeutic potential in cancer and other diseases.


Asunto(s)
Calpaína , Neoplasias , Apoptosis , Calpaína/metabolismo , Carcinogénesis , Humanos , Neoplasias/tratamiento farmacológico , Isoformas de Proteínas
10.
Cancer Res Commun ; 2(6): 456-470, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-36923551

RESUMEN

The main cause of cancer-associated deaths is the spread of cancer cells to distant organs. Despite its success in the primary tumor setting, modern chemotherapeutic strategies are rendered ineffective at treating metastatic disease, largely due to the development of resistance. The adaptor protein ezrin has been shown to promote cancer metastasis in multiple preclinical models and is associated with poor prognosis in several cancer types, including breast cancer. Ezrin promotes pro-survival signaling, particularly in disseminated cancer cells, to facilitate metastatic outgrowth. However, the role of ezrin in breast cancer chemoresistance is not fully known. In this study, we show that upregulating or downregulating ezrin expression modifies the sensitivity of breast cancer cells to doxorubicin and docetaxel treatment in vitro and is associated with changes in PI3K/Akt and NFκB pathway activation. In addition, we tested the effects of systemic treatment with a small-molecule ezrin inhibitor, NSC668394, on lung metastatic burden in vivo as a monotherapy, or in combination with anthracycline- or taxane-based chemotherapy treatment. We show that anti-ezrin treatment alone reduces metastatic burden and markedly sensitizes metastases to doxorubicin or docetaxel in neoadjuvant as well as neoadjuvant plus adjuvant treatment models. Taken together, our findings demonstrate the impact of anti-ezrin treatment in modulating response to chemotherapy in breast cancer cells as well as the efficacy of anti-ezrin treatment in combination with chemotherapy at reducing metastatic burden. Significance: This work provides preclinical evidence for combining anti-ezrin treatment with chemotherapy as a novel strategy for effectively targeting metastasis, particularly in a neoadjuvant treatment setting.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Docetaxel/farmacología , Doxorrubicina/farmacología , Terapia Neoadyuvante , Fosfatidilinositol 3-Quinasas/metabolismo
11.
J Cell Physiol ; 237(1): 566-579, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34231213

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia. It is unknown why fibrosis in IPF distributes in the peripheral or named sub-pleural area. Migration of pleural mesothelial cells (PMC) should contribute to sub-pleural fibrosis. Calpain is known to be involved in cell migration, but the role of calpain in PMC migration has not been investigated. In this study, we found that PMCs migrated into lung parenchyma in patients with IPF. Then using Wt1tm1(EGFP/Cre)Wtp /J knock-in mice, we observed PMC migration into lung parenchyma in bleomycin-induced pleural fibrosis models, and calpain inhibitor attenuated pulmonary fibrosis with prevention of PMC migration. In vitro studies revealed that bleomycin and transforming growth factor-ß1 increased calpain activity in PMCs, and activated calpain-mediated focal adhesion (FA) turnover as well as cell migration, cell proliferation, and collagen-I synthesis. Furthermore, we determined that calpain cleaved FA kinase in both C-terminal and N-terminal regions, which mediated FA turnover. Lastly, the data revealed that activated calpain was also involved in phosphorylation of cofilin-1, and p-cofilin-1 induced PMC migration. Taken together, this study provides evidence that calpain mediates PMC migration into lung parenchyma to promote sub-pleural fibrosis in IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Factores Despolimerizantes de la Actina/metabolismo , Animales , Bleomicina/farmacología , Calpaína/metabolismo , Movimiento Celular , Fibrosis , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/patología , Ratones , Factor de Crecimiento Transformador beta1/metabolismo
12.
Cells ; 10(7)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34360009

RESUMEN

Hearing loss (HL) is the most common sensory disorder in the world population. One common cause of HL is the presence of vestibular schwannoma (VS), a benign tumor of the VIII cranial nerve, arising from Schwann cell (SC) transformation. In the last decade, the increasing incidence of VS has been correlated to electromagnetic field (EMF) exposure, which might be considered a pathogenic cause of VS development and HL. Here, we explore the molecular mechanisms underlying the biologic changes of human SCs and/or their oncogenic transformation following EMF exposure. Through NGS technology and RNA-Seq transcriptomic analysis, we investigated the genomic profile and the differential display of HL-related genes after chronic EMF. We found that chronic EMF exposure modified the cell proliferation, in parallel with intracellular signaling and metabolic pathways changes, mostly related to translation and mitochondrial activities. Importantly, the expression of HL-related genes such as NEFL, TPRN, OTOGL, GJB2, and REST appeared to be deregulated in chronic EMF exposure. In conclusion, we suggest that, at a preclinical stage, EMF exposure might promote the transformation of VS cells and contribute to HL.


Asunto(s)
Movimiento Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Campos Electromagnéticos/efectos adversos , Células de Schwann/efectos de la radiación , Transcriptoma , Conexina 26/genética , Conexina 26/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Pérdida Auditiva/etiología , Pérdida Auditiva/genética , Pérdida Auditiva/metabolismo , Pérdida Auditiva/patología , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Neuroma Acústico/etiología , Neuroma Acústico/genética , Neuroma Acústico/metabolismo , Neuroma Acústico/patología , Cultivo Primario de Células , Proteínas/genética , Proteínas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Células de Schwann/metabolismo , Células de Schwann/patología , Transducción de Señal
13.
Mol Ther ; 29(6): 1984-2000, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33578036

RESUMEN

The ongoing COVID-19 pandemic has highlighted the immediate need for the development of antiviral therapeutics targeting different stages of the SARS-CoV-2 life cycle. We developed a bioluminescence-based bioreporter to interrogate the interaction between the SARS-CoV-2 viral spike (S) protein and its host entry receptor, angiotensin-converting enzyme 2 (ACE2). The bioreporter assay is based on a nanoluciferase complementation reporter, composed of two subunits, large BiT and small BiT, fused to the S receptor-binding domain (RBD) of the SARS-CoV-2 S protein and ACE2 ectodomain, respectively. Using this bioreporter, we uncovered critical host and viral determinants of the interaction, including a role for glycosylation of asparagine residues within the RBD in mediating successful viral entry. We also demonstrate the importance of N-linked glycosylation to the RBD's antigenicity and immunogenicity. Our study demonstrates the versatility of our bioreporter in mapping key residues mediating viral entry as well as screening inhibitors of the ACE2-RBD interaction. Our findings point toward targeting RBD glycosylation for therapeutic and vaccine strategies against SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Anticuerpos Neutralizantes/farmacología , Bioensayo , Lectinas/farmacología , Receptores Virales/química , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , Asparagina/química , Asparagina/metabolismo , Sitios de Unión , COVID-19/diagnóstico , COVID-19/inmunología , COVID-19/virología , Genes Reporteros , Glicosilación/efectos de los fármacos , Células HEK293 , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Mediciones Luminiscentes , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Receptores Virales/antagonistas & inhibidores , Receptores Virales/genética , Receptores Virales/inmunología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
14.
Mol Cell Proteomics ; 19(12): 1968-1986, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32912968

RESUMEN

Mallory-Denk-bodies (MDBs) are hepatic protein aggregates associated with inflammation both clinically and in MDB-inducing models. Similar protein aggregation in neurodegenerative diseases also triggers inflammation and NF-κB activation. However, the precise mechanism that links protein aggregation to NF-κB-activation and inflammatory response remains unclear. Herein we find that treating primary hepatocytes with MDB-inducing agents (N-methylprotoporphyrin (NMPP), protoporphyrin IX (PPIX), or Zinc-protoporphyrin IX (ZnPP)) elicited an IκBα-loss with consequent NF-κB activation. Four known mechanisms of IκBα-loss i.e. the canonical ubiquitin-dependent proteasomal degradation (UPD), autophagic-lysosomal degradation, calpain degradation and translational inhibition, were all probed and excluded. Immunofluorescence analyses of ZnPP-treated cells coupled with 8 M urea/CHAPS-extraction revealed that this IκBα-loss was due to its sequestration along with IκBß into insoluble aggregates, thereby releasing NF-κB. Through affinity pulldown, proximity biotinylation by antibody recognition, and other proteomic analyses, we verified that NF-κB subunit p65, which stably interacts with IκBα under normal conditions, no longer binds to it upon ZnPP-treatment. Additionally, we identified 10 proteins that interact with IκBα under baseline conditions, aggregate upon ZnPP-treatment, and maintain the interaction with IκBα after ZnPP-treatment, either by cosequestering into insoluble aggregates or through a different mechanism. Of these 10 proteins, the nucleoporins Nup153 and Nup358/RanBP2 were identified through RNA-interference, as mediators of IκBα-nuclear import. The concurrent aggregation of IκBα, NUP153, and RanBP2 upon ZnPP-treatment, synergistically precluded the nuclear entry of IκBα and its consequent binding and termination of NF-κB activation. This novel mechanism may account for the protein aggregate-induced inflammation observed in liver diseases, thus identifying novel targets for therapeutic intervention. Because of inherent commonalities this MDB cell model is a bona fide protoporphyric model, making these findings equally relevant to the liver inflammation associated with clinical protoporphyria.


Asunto(s)
Proteínas I-kappa B/metabolismo , Inflamación/patología , Hígado/metabolismo , Hígado/patología , FN-kappa B/metabolismo , Agregado de Proteínas , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Autofagia/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Complejo Poro Nuclear/metabolismo , Agregado de Proteínas/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Protoporfirinas/farmacología , ARN Interferente Pequeño/metabolismo , Proteína Sequestosoma-1/metabolismo , Solubilidad
15.
J Biol Chem ; 295(49): 16840-16851, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-32989050

RESUMEN

The human cardiovascular system has adapted to function optimally in Earth's 1G gravity, and microgravity conditions cause myocardial abnormalities, including atrophy and dysfunction. However, the underlying mechanisms linking microgravity and cardiac anomalies are incompletely understood. In this study, we investigated whether and how calpain activation promotes myocardial abnormalities under simulated microgravity conditions. Simulated microgravity was induced by tail suspension in mice with cardiomyocyte-specific deletion of Capns1, which disrupts activity and stability of calpain-1 and calpain-2, and their WT littermates. Tail suspension time-dependently reduced cardiomyocyte size, heart weight, and myocardial function in WT mice, and these changes were accompanied by calpain activation, NADPH oxidase activation, and oxidative stress in heart tissues. The effects of tail suspension were attenuated by deletion of Capns1 Notably, the protective effects of Capns1 deletion were associated with the prevention of phosphorylation of Ser-345 on p47 phox and attenuation of ERK1/2 and p38 activation in hearts of tail-suspended mice. Using a rotary cell culture system, we simulated microgravity in cultured neonatal mouse cardiomyocytes and observed decreased total protein/DNA ratio and induced calpain activation, phosphorylation of Ser-345 on p47 phox , and activation of ERK1/2 and p38, all of which were prevented by calpain inhibitor-III. Furthermore, inhibition of ERK1/2 or p38 attenuated phosphorylation of Ser-345 on p47 phox in cardiomyocytes under simulated microgravity. This study demonstrates for the first time that calpain promotes NADPH oxidase activation and myocardial abnormalities under microgravity by facilitating p47 phox phosphorylation via ERK1/2 and p38 pathways. Thus, calpain inhibition may be an effective therapeutic approach to reduce microgravity-induced myocardial abnormalities.


Asunto(s)
Calpaína/metabolismo , Sistema de Señalización de MAP Quinasas , Miocardio/metabolismo , Ingravidez , Animales , Calpaína/deficiencia , Calpaína/genética , Corazón/fisiología , Suspensión Trasera , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , NADPH Oxidasas/metabolismo , Tamaño de los Órganos , Estrés Oxidativo , Fosforilación , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
J Cell Biol ; 219(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32673396

RESUMEN

The tumor suppressor PTEN is essential for early development. Its lipid phosphatase activity converts PIP3 to PIP2 and antagonizes the PI3K-Akt pathway. In this study, we demonstrate that PTEN's protein phosphatase activity is required for epiblast epithelial differentiation and polarization. This is accomplished by reconstitution of PTEN-null embryoid bodies with PTEN mutants that lack only PTEN's lipid phosphatase activity or both PTEN's lipid and protein phosphatase activities. Phosphotyrosine antibody immunoprecipitation and mass spectrometry were used to identify Abi1, a core component of the WASP-family verprolin homologous protein (WAVE) regulatory complex (WRC), as a new PTEN substrate. We demonstrate that PTEN dephosphorylation of Abi1 at Y213 and S216 results in Abi1 degradation through the calpain pathway. This leads to down-regulation of the WRC and reorganization of the actin cytoskeleton. The latter is critical to the transformation of nonpolar pluripotent stem cells into the polarized epiblast epithelium. Our findings establish a link between PTEN and WAVE-Arp2/3-regulated actin cytoskeletal dynamics in epithelial morphogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Citoesqueleto/metabolismo , Células Epiteliales/metabolismo , Morfogénesis/fisiología , Fosfohidrolasa PTEN/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Calpaína/metabolismo , Diferenciación Celular/fisiología , Línea Celular Tumoral , Regulación hacia Abajo/fisiología , Epitelio/metabolismo , Femenino , Estratos Germinativos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Embarazo , Transducción de Señal/fisiología
17.
Front Immunol ; 10: 2481, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31695698

RESUMEN

Neutrophils respond to various stimuli by decondensing and releasing nuclear chromatin characterized by citrullinated histones as neutrophil extracellular traps (NETs). This achieves pathogen immobilization or initiation of thrombosis, yet the molecular mechanisms of NET formation remain elusive. Peptidyl arginine deiminase-4 (PAD4) achieves protein citrullination and has been intricately linked to NET formation. Here we show that citrullination represents a major regulator of proteolysis in the course of NET formation. Elevated cytosolic calcium levels trigger both peptidylarginine deiminase-4 (PAD4) and calpain activity in neutrophils resulting in nuclear decondensation typical of NETs. Interestingly, PAD4 relies on proteolysis by calpain to achieve efficient nuclear lamina breakdown and chromatin decondensation. Pharmacological or genetic inhibition of PAD4 and calpain strongly inhibit chromatin decondensation of human and murine neutrophils in response to calcium ionophores as well as the proteolysis of nuclear proteins like lamin B1 and high mobility group box protein 1 (HMGB1). Taken together, the concerted action of PAD4 and calpain induces nuclear decondensation in the course of calcium-mediated NET formation.


Asunto(s)
Calpaína/inmunología , Citrulinación/inmunología , Trampas Extracelulares/inmunología , Neutrófilos/inmunología , Lámina Nuclear/inmunología , Animales , Calpaína/genética , Citrulinación/genética , Trampas Extracelulares/genética , Humanos , Ratones , Ratones Noqueados , Neutrófilos/citología , Lámina Nuclear/genética , Arginina Deiminasa Proteína-Tipo 4/genética , Arginina Deiminasa Proteína-Tipo 4/inmunología
18.
Antioxid Redox Signal ; 31(12): 804-818, 2019 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-31088299

RESUMEN

Aims: Airway and pulmonary vascular remodeling is an important pathological feature in the pathogenesis of chronic obstructive pulmonary disease (COPD). Tobacco smoke (TS) induces the production of large amounts of reactive oxygen species (ROS) in COPD lungs. We investigated how ROS lead to airway and pulmonary vascular remodeling in COPD. Results: We used in vitro bronchial and pulmonary artery smooth muscle cells (BSMCs and PASMCs), in vivo TS-induced COPD rodent models, and lung tissues of COPD patients. We found that H2O2 and TS extract (TSE) induced calpain activation in BSMCs and PASMCs. Calpain activation was elevated in smooth muscle of bronchi and pulmonary arterioles in COPD patients and TS-induced COPD rodent models. Calpain inhibition attenuated H2O2- and TSE-induced collagen synthesis and proliferation of BSMCs and PASMCs. Exposure to TS causes increases in airway resistance, right ventricular systolic pressure (RVSP), and thickening of bronchi and pulmonary arteries. Calpain inhibition by smooth muscle-specific knockout of calpain and the calpain inhibitor MDL28170 attenuated increases in airway resistance, RVSP, and thickening of bronchi and pulmonary arteries. Moreover, smooth muscle-specific knockout of calpain did not reduce TS-induced emphysema in the mouse model, but MDL28170 did reduce TS-induced emphysema in the rat model. Innovation: This study provides the first evidence that ROS-induced calpain activation contributes to airway and pulmonary vascular remodeling in TS-induced COPD. Calpain might be a novel therapeutic target for the treatment of COPD. Conclusion: These results indicate that ROS-induced calpain activation contributes to airway and pulmonary vascular remodeling and pulmonary hypertension in COPD.


Asunto(s)
Arterias Bronquiales/citología , Calpaína/metabolismo , Peróxido de Hidrógeno/efectos adversos , Arteria Pulmonar/citología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Humo/efectos adversos , Animales , Arterias Bronquiales/efectos de los fármacos , Arterias Bronquiales/metabolismo , Calpaína/genética , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Colágeno/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Ratas , Nicotiana , Remodelación Vascular
19.
Diabetologia ; 62(5): 860-872, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30778623

RESUMEN

AIMS/HYPOTHESIS: The role of non-cardiomyocytes in diabetic cardiomyopathy has not been fully addressed. This study investigated whether endothelial cell calpain plays a role in myocardial endothelial injury and microvascular rarefaction in diabetes, thereby contributing to diabetic cardiomyopathy. METHODS: Endothelial cell-specific Capns1-knockout (KO) mice were generated. Conditions mimicking prediabetes and type 1 and type 2 diabetes were induced in these KO mice and their wild-type littermates. Myocardial function and coronary flow reserve were assessed by echocardiography. Histological analyses were performed to determine capillary density, cardiomyocyte size and fibrosis in the heart. Isolated aortas were assayed for neovascularisation. Cultured cardiac microvascular endothelial cells were stimulated with high palmitate. Angiogenesis and apoptosis were analysed. RESULTS: Endothelial cell-specific deletion of Capns1 disrupted calpain 1 and calpain 2 in endothelial cells, reduced cardiac fibrosis and hypertrophy, and alleviated myocardial dysfunction in mouse models of diabetes without significantly affecting systemic metabolic variables. These protective effects of calpain disruption in endothelial cells were associated with an increase in myocardial capillary density (wild-type vs Capns1-KO 3646.14 ± 423.51 vs 4708.7 ± 417.93 capillary number/high-power field in prediabetes, 2999.36 ± 854.77 vs 4579.22 ± 672.56 capillary number/high-power field in type 2 diabetes and 2364.87 ± 249.57 vs 3014.63 ± 215.46 capillary number/high-power field in type 1 diabetes) and coronary flow reserve. Ex vivo analysis of neovascularisation revealed more endothelial cell sprouts from aortic rings of prediabetic and diabetic Capns1-KO mice compared with their wild-type littermates. In cultured cardiac microvascular endothelial cells, inhibition of calpain improved angiogenesis and prevented apoptosis under metabolic stress. Mechanistically, deletion of Capns1 elevated the protein levels of ß-catenin in endothelial cells of Capns1-KO mice and constitutive activity of calpain 2 suppressed ß-catenin protein expression in cultured endothelial cells. Upregulation of ß-catenin promoted angiogenesis and inhibited apoptosis whereas knockdown of ß-catenin offset the protective effects of calpain inhibition in endothelial cells under metabolic stress. CONCLUSIONS/INTERPRETATION: These results delineate a primary role of calpain in inducing cardiac endothelial cell injury and impairing neovascularisation via suppression of ß-catenin, thereby promoting diabetic cardiomyopathy, and indicate that calpain is a promising therapeutic target to prevent diabetic cardiac complications.


Asunto(s)
Calpaína/genética , Calpaína/fisiología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/terapia , Células Endoteliales/enzimología , Neovascularización Patológica , Neovascularización Fisiológica , Animales , Apoptosis , Diabetes Mellitus Tipo 2/metabolismo , Fibroblastos/metabolismo , Eliminación de Gen , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Transducción de Señal , beta Catenina/metabolismo
20.
Breast Cancer Res ; 21(1): 12, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30678714

RESUMEN

BACKGROUND: Limited understanding of the cancer biology of metastatic sites is a major factor contributing to poor outcomes in cancer patients. The regional lymph nodes are the most common site of metastasis in most solid cancers and their involvement is a strong predictor of relapse in breast cancer (BC). We have previously shown that ezrin, a cytoskeletal-membrane linker protein, is associated with lymphovascular invasion and promotes metastatic progression in BC. However, the efficacy of pharmacological inhibition of ezrin in blocking cancer cell migration and metastasis remains unexplored in BC. METHODS: We quantified ezrin expression in a BC tissue microarray (n = 347) to assess its correlation with risk of relapse. Next, we developed a quantitative intravital microscopy (qIVM) approach, using a syngeneic lymphatic reporter mouse tumor model, to investigate the effect of systemic ezrin inhibition on cancer cell migration and metastasis. RESULTS: We show that ezrin is expressed at significantly higher levels in lymph node metastases compared to matched primary tumors, and that a high tumor ezrin level is associated with increased risk of relapse in BC patients with regional disease. Using qIVM, we observe a subset of cancer cells that retain their invasive and migratory phenotype at the tumor-draining lymph node. We further show that systemic inhibition of ezrin, using a small molecule compound (NSC668394), impedes the migration of cancer cells in vivo. Furthermore, systemic ezrin inhibition leads to reductions in metastatic burden at the distal axillary lymph node and lungs. CONCLUSIONS: Our findings demonstrate that the tumor ezrin level act as an independent biomarker in predicting relapse and provide a rationale for therapeutic targeting of ezrin to reduce the metastatic capacity of cancer cells in high-risk BC patients with elevated ezrin expression.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Proteínas del Citoesqueleto/metabolismo , Neoplasias Pulmonares/patología , Recurrencia Local de Neoplasia/patología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/antagonistas & inhibidores , Mama/patología , Neoplasias de la Mama/diagnóstico por imagen , Línea Celular Tumoral/trasplante , Movimiento Celular/efectos de los fármacos , Estudios de Cohortes , Proteínas del Citoesqueleto/antagonistas & inhibidores , Modelos Animales de Enfermedad , Femenino , Genes Reporteros , Humanos , Microscopía Intravital , Pulmón/diagnóstico por imagen , Pulmón/patología , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/secundario , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/patología , Metástasis Linfática/diagnóstico por imagen , Metástasis Linfática/patología , Metástasis Linfática/prevención & control , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Fenoles/farmacología , Fenoles/uso terapéutico , Quinolonas/farmacología , Quinolonas/uso terapéutico , Análisis de Matrices Tisulares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...