RESUMEN
Adipokines play crucial roles in both reproductive and energy metabolic processes. This study aimed to compare the hormonal plasma profile of adiponectin, apelin, vaspin, chemerin, resistin, visfatin, and adipolin, and the expression of their receptors in the anterior pituitary (AP) between normal-weight Large White (LW) and fat Meishan (MS) pigs during different phases of the estrous cycle. We measured adipokine levels in the plasma and assessed their gene expression in the AP. We used Pearson's correlation analysis to examine potential links between adipokines levels, their receptors, and metabolic parameters (body weight; backfat thickness) and reproductive parameters (pituitary weight; age at puberty; levels of gonadotropins, steroid hormones; and gene expression of gonadotropin-releasing hormone receptor and gonadotropins in AP). The plasma levels of the evaluated adipokines fluctuated with phase and breed, except for visfatin and adipolin. Moreover, adipokine expression in AP varied significantly between breeds and estrous cycle phases, except for resistin receptor CAP1. Notably, we observed a positive correlation between plasma levels of adiponectin and its transcript in the AP only in MS pigs. Apelin gene expression correlated negatively with its receptor in MS, while we observed a breed-dependent correlation between chemerin gene expression and its receptor CMKLR1. We identified significant positive or negative correlations between adipokines or their receptor levels in plasma and AP as well as metabolic or reproductive parameters, depending on the breed. In conclusion, we have demonstrated breed-specific and estrous cycle-dependent regulation of adipokines in AP, underscoring their potential impact on metabolic and reproductive processes in swine.
Asunto(s)
Adipoquinas , Ciclo Estral , Animales , Ciclo Estral/sangre , Ciclo Estral/metabolismo , Femenino , Porcinos , Adipoquinas/sangre , Adipoquinas/metabolismo , Adenohipófisis/metabolismoRESUMEN
Reproductive success consists of a sequential events chronology, starting with the ovum fertilization, implantation of the embryo, placentation, and cellular processes like proliferation, apoptosis, angiogenesis, endocrinology, or metabolic changes, which taken together finally conduct the birth of healthy offspring. Currently, many factors are known that affect the regulation and proper maintenance of pregnancy in humans, domestic animals, or rodents. Among the determinants of reproductive success should be distinguished: the maternal microenvironment, genes, and proteins as well as numerous pregnancy hormones that regulate the most important processes and ensure organism homeostasis. It is well known that white adipose tissue, as the largest endocrine gland in our body, participates in the synthesis and secretion of numerous hormones belonging to the adipokine family, which also may regulate the course of pregnancy. Unfortunately, overweight and obesity lead to the expansion of adipose tissue in the body, and its excess in both women and animals contributes to changes in the synthesis and release of adipokines, which in turn translates into dramatic changes during pregnancy, including those taking place in the organ that is crucial for the proper progress of pregnancy, i.e. the placenta. In this chapter, we are summarizing the current knowledge about levels of adipokines and their role in the placenta, taking into account the physiological and pathological conditions of pregnancy, e.g. gestational diabetes mellitus, preeclampsia, or intrauterine growth restriction in humans, domestic animals, and rodents.
Asunto(s)
Adipoquinas , Embarazo , Humanos , Adipoquinas/metabolismo , Femenino , Animales , Placenta/metabolismo , Diabetes Gestacional/metabolismoRESUMEN
Phoenixin-14 (PNX-14) regulates energy metabolism via the G protein-coupled receptor 173 (GPR173); elevated plasma levels have been described in patients with polycystic ovary syndrome. The aims were to investigate the ovarian expression of PNX-14/GPR173 and the in vitro effect of PNX-14 on granulosa cells (Gc) function. Transcript and protein levels of PNX-14/GRP173 were analysed by real-time PCR, western blot and immunohistochemistry in the porcine ovarian follicles at days 2-3, 10-12 and 16-18 of the oestrous. For in vitro experiments, Gc were isolated from follicles at days 10-12 of the oestrous (4-6 mm) and PNX-14 at doses 1-1000 nM was added for 24-72 h to determine Gc proliferation. Cell cycle progression, E2 secretion, expression of proliferating cells nuclear antigen, cyclins, mitogen-activated kinase (MAP3/1; ERK1/2), protein kinase B (AKT) and signal transducer and activator of transcription 3 (STAT3) were studied. The involvement of these kinases in PNX-14 action on Gc proliferation was analysed using pharmacological inhibitors. Levels of GPR173 were increased in the ovarian follicles with oestrous progression, while only PNX-14 protein was the highest at days 10-12 of the oestrous. Immuno-signal of PNX-14 was detected in Gc and theca cells and oocyte, while GPR173 was mostly in theca. Interestingly, PNX-14 stimulated Gc proliferation, E2 secretion, cell cycle progression and cyclins expression and had a modulatory effect on MAP3/1, AKT and STAT3 activation. Our study suggests that PNX-14 could be an important factor for porcine reproduction by influencing ovarian follicle growth through direct action on Gc function.