Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 14: 1282183, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38567021

RESUMEN

Obligate intracellular bacteria have remained those for which effective vaccines are unavailable, mostly because protection does not solely rely on an antibody response. Effective antibody-based vaccines, however, have been developed against extracellular bacteria pathogens or toxins. Additionally, obligate intracellular bacteria have evolved many mechanisms to subvert the immune response, making vaccine development complex. Much of what we know about protective immunity for these pathogens has been determined using infection-resolved cases and animal models that mimic disease. These studies have laid the groundwork for antigen discovery, which, combined with recent advances in vaccinology, should allow for the development of safe and efficacious vaccines. Successful vaccines against obligate intracellular bacteria should elicit potent T cell memory responses, in addition to humoral responses. Furthermore, they ought to be designed to specifically induce strong cytotoxic CD8+ T cell responses for protective immunity. This review will describe what we know about the potentially protective immune responses to this group of bacteria. Additionally, we will argue that the novel delivery platforms used during the Sars-CoV-2 pandemic should be excellent candidates to produce protective immunity once antigens are discovered. We will then look more specifically into the vaccine development for Rickettsiaceae, Coxiella burnetti, and Anaplasmataceae from infancy until today. We have not included Chlamydia trachomatis in this review because of the many vaccine related reviews that have been written in recent years.


Asunto(s)
Vacunas Bacterianas , Chlamydia trachomatis , Animales , Anticuerpos , Linfocitos T CD8-positivos , Formación de Anticuerpos
2.
Infect Immun ; 87(12)2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31501249

RESUMEN

Coxiella burnetii, the etiological agent of Q fever, is a Gram-negative bacterium transmitted to humans by inhalation of contaminated aerosols. Acute Q fever is often self-limiting, presenting as a febrile illness that can result in atypical pneumonia. In some cases, Q fever becomes chronic, leading to endocarditis that can be life threatening. The formalin-inactivated whole-cell vaccine (WCV) confers long-term protection but has significant side effects when administered to presensitized individuals. Designing new vaccines against C. burnetii remains a challenge and requires the use of clinically relevant modes of transmission in appropriate animal models. We have developed a safe and reproducible C. burnetii aerosol challenge in three different animal models to evaluate the effects of pulmonary acquired infection. Using a MicroSprayer aerosolizer, BL/6 mice and Hartley guinea pigs were infected intratracheally with C. burnetii Nine Mile phase I (NMI) and demonstrated susceptibility as determined by measuring bacterial growth in the lungs and subsequent dissemination to the spleen. Histological analysis of lung tissue showed significant pathology associated with disease, which was more severe in guinea pigs. Infection using large-particle aerosol (LPA) delivery was further confirmed in nonhuman primates, which developed fever and pneumonia. We also demonstrate that vaccinating mice and guinea pigs with WCV prior to LPA challenge is capable of eliciting protective immunity that significantly reduces splenomegaly and the bacterial burden in spleen and lung tissues. These data suggest that these models can have appreciable value in using the LPA delivery system to study pulmonary Q fever pathogenesis as well as designing vaccine countermeasures to C. burnetii aerosol transmission.


Asunto(s)
Vacunas Bacterianas/inmunología , Coxiella burnetii/inmunología , Pulmón/microbiología , Fiebre Q/veterinaria , Vacunas de Productos Inactivados/inmunología , Administración Intranasal , Animales , Anticuerpos Antibacterianos/inmunología , Vacunas Bacterianas/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Cobayas , Pulmón/inmunología , Macaca mulatta , Ratones , Ratones Endogámicos C57BL , Fiebre Q/inmunología , Fiebre Q/prevención & control , Bazo/inmunología , Bazo/microbiología , Vacunas de Productos Inactivados/administración & dosificación
3.
Vaccine ; 30(48): 6777-82, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23000121

RESUMEN

The efficacy of 15 nm gold nanoparticles (AuNP) coated with Yersinia pestis F1-antigen, as an immunogen in mice, has been assessed. The nanoparticles were decorated with F1-antigen using N-hydroxysuccinimide and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride coupling chemistry. Mice given AuNP-F1 in alhydrogel generated the greatest IgG antibody response to F1-antigen when compared with mice given AuNP-F1 in PBS or given unconjugated F1-antigen in PBS or alhydrogel. Compared with unconjugated F1-antigen, the IgG2a response was enhanced in mice dosed with AuNP-F1 in PBS (p<0.05) but not in mice immunised with AuNP-F1 in alhydrogel. All treatment groups developed a memory response to F1-antigen, the polarity of which was inflenced by formulation in alhydrogel. The sera raised against F1-antigen coupled to AuNPs was able to competitively bind to rF1-antigen, displacing protective macaque sera.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Proteínas Bacterianas/inmunología , Portadores de Fármacos/administración & dosificación , Oro/administración & dosificación , Nanopartículas/administración & dosificación , Vacuna contra la Peste/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Proteínas Bacterianas/administración & dosificación , Femenino , Inmunoglobulina G/sangre , Memoria Inmunológica , Ratones , Ratones Endogámicos BALB C , Vacuna contra la Peste/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...