RESUMEN
Antimicrobial peptides (AMPs) contribute to the immune defenses of many vertebrates, including amphibians. As larvae, amphibians are often exposed to the infectious stages of trematode parasites, many of which must penetrate the host's skin, potentially interacting with host AMPs. We tested the effects of the natural AMPs repertoires on both the survival of trematode infectious stages as well as their ability to infect larval amphibians. All five trematode species exhibited decreased survival of cercariae in response to higher concentrations of adult bullfrog AMPs, but no effect when exposed to AMPs from larval bullfrogs. Similarly, the use of norepinephrine to remove AMPs from larval bullfrogs, Pacific chorus frogs, and gray treefrogs had only weak (gray treefrogs) or non-significant (other tested species) effects on infection success by Ribeiroia ondatrae. We nonetheless observed strong differences in parasite infection as a function of both host stage (first- versus second-year bullfrogs) and host species (Pacific chorus frogs versus gray treefrogs) that were apparently unrelated to AMPs. Taken together, our results suggest that AMPs do not play a significant role in defending larval amphibians against trematode cercariae, but that they could be one mechanism helping to prevent infection of post-metamorphic amphibians, particularly for highly aquatic species.
Asunto(s)
Antiinfecciosos , Anuros/parasitología , Péptidos/fisiología , Infecciones por Trematodos , Animales , TrematodosRESUMEN
Infections by the digenetic trematode, Ribeiroia ondatrae, cause severe limb malformations in many North American amphibians. Ribeiroia ondatrae also infects fishes as second intermediate hosts, but less is known about the pathology and immune responses initiated in infected fish, even though reports of infected fish date back to early 1900s. To this end, we experimentally exposed juvenile Bluegills Lepomis macrochirus to three doses of R. ondatrae cercariae and monitored the pathology, parasite infection success, and humoral responses over 648 h. All exposed fish became infected with metacercariae, and the average infection load increased with exposure dose. Histologically, infection was associated with acute hemorrhages in the lateral line and local dermis at 36 h, followed by progressive granulomatous inflammation that led to the destruction of encysted metacercariae. Correspondingly, over the course of 648 h we observed an 85% decline in average infection load among hosts, reflecting the host's clearance of the parasite. Infection was not associated with changes in fish growth or survival, but did correlate with leukocytosis and neutrophilia in circulating host blood. Understanding the physiological responses of R. ondatrae in Bluegill will help to clarify the ecological effects of this parasite and provide a foundation for subsequent comparisons into its effects on behavior, individual health, and population dynamics of Bluegill.