Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3830, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37380628

RESUMEN

Combination of anti-cancer drugs is broadly seen as way to overcome the often-limited efficacy of single agents. The design and testing of combinations are however very challenging. Here we present a uniquely large dataset screening over 5000 targeted agent combinations across 81 non-small cell lung cancer cell lines. Our analysis reveals a profound heterogeneity of response across the tumor models. Notably, combinations very rarely result in a strong gain in efficacy over the range of response observable with single agents. Importantly, gain of activity over single agents is more often seen when co-targeting functionally proximal genes, offering a strategy for designing more efficient combinations. Because combinatorial effect is strongly context specific, tumor specificity should be achievable. The resource provided, together with an additional validation screen sheds light on major challenges and opportunities in building efficacious combinations against cancer and provides an opportunity for training computational models for synergy prediction.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Combinación de Medicamentos
2.
Nat Cancer ; 4(3): 365-381, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36914816

RESUMEN

Adult liver malignancies, including intrahepatic cholangiocarcinoma and hepatocellular carcinoma, are the second leading cause of cancer-related deaths worldwide. Most individuals are treated with either combination chemotherapy or immunotherapy, respectively, without specific biomarkers for selection. Here using high-throughput screens, proteomics and in vitro resistance models, we identify the small molecule YC-1 as selectively active against a defined subset of cell lines derived from both liver cancer types. We demonstrate that selectivity is determined by expression of the liver-resident cytosolic sulfotransferase enzyme SULT1A1, which sulfonates YC-1. Sulfonation stimulates covalent binding of YC-1 to lysine residues in protein targets, enriching for RNA-binding factors. Computational analysis defined a wider group of structurally related SULT1A1-activated small molecules with distinct target profiles, which together constitute an untapped small-molecule class. These studies provide a foundation for preclinical development of these agents and point to the broader potential of exploiting SULT1A1 activity for selective targeting strategies.


Asunto(s)
Alquilantes , Neoplasias Hepáticas , Humanos , Sulfotransferasas , Neoplasias Hepáticas/tratamiento farmacológico , Arilsulfotransferasa
3.
Science ; 378(6624): 1097-1104, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36480603

RESUMEN

The search for cell-permeable drugs has conventionally focused on low-molecular weight (MW), nonpolar, rigid chemical structures. However, emerging therapeutic strategies break traditional drug design rules by employing flexibly linked chemical entities composed of more than one ligand. Using complementary genome-scale chemical-genetic approaches we identified an endogenous chemical uptake pathway involving interferon-induced transmembrane proteins (IFITMs) that modulates the cell permeability of a prototypical biopic inhibitor of MTOR (RapaLink-1, MW: 1784 g/mol). We devised additional linked inhibitors targeting BCR-ABL1 (DasatiLink-1, MW: 1518 g/mol) and EIF4A1 (BisRoc-1, MW: 1466 g/mol), uptake of which was facilitated by IFITMs. We also found that IFITMs moderately assisted some proteolysis-targeting chimeras and examined the physicochemical requirements for involvement of this uptake pathway.

4.
Cancer Res Commun ; 2(9): 1061-1074, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36506869

RESUMEN

Preclinical and clinical studies have evidenced that effective targeted therapy treatment against receptor tyrosine kinases (RTKs) in different solid tumor paradigms is predicated on simultaneous inhibition of both the PI3K and MEK intracellular signaling pathways. Indeed, re-activation of either pathway results in resistance to these therapies. Recently, oncogenic phosphatase SHP2 inhibitors have been developed with some now reaching clinical trials. To expand on possible indications for SHP099, we screened over 800 cancer cell lines covering over 25 subsets of cancer. We found HNSCC was the most sensitive adult subtype of cancer to SHP099. We found that, in addition to the MEK pathway, SHP2 inhibition blocks the PI3K pathway in sensitive HNSCC, resulting in downregulation of mTORC signaling and anti-tumor effects across several HNSCC mouse models, including an HPV+ patient-derived xenograft (PDX). Importantly, we found low levels of the RTK ligand epiregulin identified HNSCCs that were sensitive to SHP2 inhibitor, and, adding exogenous epiregulin mitigated SHP099 efficacy. Mechanistically, epiregulin maintained SHP2-GAB1 complexes in the presence of SHP2 inhibition, preventing downregulation of the MEK and PI3K pathways. We demonstrate HNSCCs were highly dependent on GAB1 for their survival and knockdown of GAB1 is sufficient to block the ability of epiregulin to rescue MEK and PI3K signaling. These data connect the sensitivity of HNSCC to SHP2 inhibitors and to a broad reliance on GAB1-SHP2, revealing an important and druggable signaling axis. Overall, SHP2 inhibitors are being heavily developed and may have activity in HNSCCs, and in particular those with low levels of epiregulin.


Asunto(s)
Neoplasias de Cabeza y Cuello , Fosfatidilinositol 3-Quinasas , Animales , Ratones , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Epirregulina/metabolismo , Inhibidores Enzimáticos/farmacología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
5.
Nat Commun ; 13(1): 6744, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36347861

RESUMEN

Targeting TEAD autopalmitoylation has been proposed as a therapeutic approach for YAP-dependent cancers. Here we show that TEAD palmitoylation inhibitor MGH-CP1 and analogues block cancer cell "stemness", organ overgrowth and tumor initiation in vitro and in vivo. MGH-CP1 sensitivity correlates significantly with YAP-dependency in a large panel of cancer cell lines. However, TEAD inhibition or YAP/TAZ knockdown leads to transient inhibition of cell cycle progression without inducing cell death, undermining their potential therapeutic utilities. We further reveal that TEAD inhibition or YAP/TAZ silencing leads to VGLL3-mediated transcriptional activation of SOX4/PI3K/AKT signaling axis, which contributes to cancer cell survival and confers therapeutic resistance to TEAD inhibitors. Consistently, combination of TEAD and AKT inhibitors exhibits strong synergy in inducing cancer cell death. Our work characterizes the therapeutic opportunities and limitations of TEAD palmitoylation inhibitors in cancers, and uncovers an intrinsic molecular mechanism, which confers potential therapeutic resistance.


Asunto(s)
Neoplasias , Fosfatidilinositol 3-Quinasas , Humanos , Lipoilación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción de Dominio TEA/metabolismo
6.
Cell Rep ; 40(4): 111095, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35905710

RESUMEN

Reoccurring/high-risk neuroblastoma (NB) tumors have the enrichment of non-RAS/RAF mutations along the mitogen-activated protein kinase (MAPK) signaling pathway, suggesting that activation of MEK/ERK is critical for their survival. However, based on preclinical data, MEK inhibitors are unlikely to be active in NB and have demonstrated dose-limiting toxicities that limit their use. Here, we explore an alternative way to target the MAPK pathway in high-risk NB. We find that NB models are among the most sensitive among over 900 tumor-derived cell lines to the allosteric SHP2 inhibitor SHP099. Sensitivity to SHP099 in NB is greater in models with loss or low expression of the RAS GTPase activation protein (GAP) neurofibromin 1 (NF1). Furthermore, NF1 is lower in advanced and relapsed NB and NF1 loss is enriched in high-risk NB tumors regardless of MYCN status. SHP2 inhibition consistently blocks tumor growth in high-risk NB mouse models, revealing a new drug target in relapsed NB.


Asunto(s)
Neuroblastoma , Neurofibromina 1 , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Animales , Línea Celular Tumoral , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos , Proteínas Quinasas Activadas por Mitógenos , Recurrencia Local de Neoplasia , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/patología , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Inhibidores de Proteínas Quinasas/farmacología
7.
Cancer Discov ; 12(5): 1378-1395, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35420673

RESUMEN

FGFR inhibitors are approved for the treatment of advanced cholangiocarcinoma harboring FGFR2 fusions. However, the response rate is moderate, and resistance emerges rapidly due to acquired secondary FGFR2 mutations or due to other less-defined mechanisms. Here, we conducted high-throughput combination drug screens, biochemical analysis, and therapeutic studies using patient-derived models of FGFR2 fusion-positive cholangiocarcinoma to gain insight into these clinical profiles and uncover improved treatment strategies. We found that feedback activation of EGFR signaling limits FGFR inhibitor efficacy, restricting cell death induction in sensitive models and causing resistance in insensitive models lacking secondary FGFR2 mutations. Inhibition of wild-type EGFR potentiated responses to FGFR inhibitors in both contexts, durably suppressing MEK/ERK and mTOR signaling, increasing apoptosis, and causing marked tumor regressions in vivo. Our findings reveal EGFR-dependent adaptive signaling as an important mechanism limiting FGFR inhibitor efficacy and driving resistance and support clinical testing of FGFR/EGFR inhibitor therapy for FGFR2 fusion-positive cholangiocarcinoma. SIGNIFICANCE: We demonstrate that feedback activation of EGFR signaling limits the effectiveness of FGFR inhibitor therapy and drives adaptive resistance in patient-derived models of FGFR2 fusion-positive cholangiocarcinoma. These studies support the potential of combination treatment with FGFR and EGFR inhibitors as an improved treatment for patients with FGFR2-driven cholangiocarcinoma. This article is highlighted in the In This Issue feature, p. 1171.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Receptores ErbB/genética , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/farmacología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo
8.
Int J Radiat Oncol Biol Phys ; 111(5): e63-e74, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34343607

RESUMEN

The development of molecular targeted drugs with radiation and chemotherapy is critically important for improving the outcomes of patients with hard-to-treat, potentially curable cancers. However, too many preclinical studies have not translated into successful radiation oncology trials. Major contributing factors to this insufficiency include poor reproducibility of preclinical data, inadequate preclinical modeling of intertumoral genomic heterogeneity that influences treatment sensitivity in the clinic, and a reliance on tumor growth delay instead of local control (TCD50) endpoints. There exists an urgent need to overcome these barriers to facilitate successful clinical translation of targeted radiosensitizers. To this end, we have used 3-dimensional (3D) cell culture assays to better model tumor behavior in vivo. Examples of successful prediction of in vivo effects with these 3D assays include radiosensitization of head and neck cancers by inhibiting epidermal growth factor receptor or focal adhesion kinase signaling, and radioresistance associated with oncogenic mutation of KRAS. To address the issue of tumor heterogeneity, we leveraged institutional resources that allow high-throughput 3D screening of radiation combinations with small-molecule inhibitors across genomically characterized cell lines from lung, head and neck, and pancreatic cancers. This high-throughput screen is expected to uncover genomic biomarkers that will inform the successful clinical translation of targeted agents from the National Cancer Institute Cancer Therapy Evaluation Program portfolio and other sources. Screening "hits" need to be subjected to refinement studies that include clonogenic assays, addition of disease-specific chemotherapeutics, target/biomarker validation, and integration of patient-derived tumor models. The chemoradiosensitizing activities of the most promising drugs should be confirmed in TCD50 assays in xenograft models with or without relevant biomarker and using clinically relevant radiation fractionation. We predict that appropriately validated and biomarker-directed targeted therapies will have a higher likelihood than past efforts of being successfully incorporated into the standard management of hard-to-treat tumors.


Asunto(s)
Terapia Molecular Dirigida , Biomarcadores de Tumor , Humanos , Neoplasias , Preparaciones Farmacéuticas , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Reproducibilidad de los Resultados
9.
Mol Cancer Ther ; 20(8): 1400-1411, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34088831

RESUMEN

Venetoclax is a small molecule inhibitor of the prosurvival protein BCL-2 that has gained market approval in BCL-2-dependent hematologic cancers including chronic lymphocytic leukemia and acute myeloid leukemia. Neuroblastoma is a heterogenous pediatric cancer with a 5-year survival rate of less than 50% for high-risk patients, which includes nearly all cases with amplified MYCN We previously demonstrated that venetoclax is active in MYCN-amplified neuroblastoma but has limited single-agent activity in most models, presumably the result of other pro-survival BCL-2 family protein expression or insufficient prodeath protein mobilization. As the relative tolerability of venetoclax makes it amenable to combining with other therapies, we evaluated the sensitivity of MYCN-amplified neuroblastoma models to rational combinations of venetoclax with agents that have both mechanistic complementarity and active clinical programs. First, the MDM2 inhibitor NVP-CGM097 increases the prodeath BH3-only protein NOXA to sensitize p53-wild-type, MYCN-amplified neuroblastomas to venetoclax. Second, the MCL-1 inhibitor S63845 sensitizes MYCN-amplified neuroblastoma through neutralization of MCL-1, inducing synergistic cell killing when combined with venetoclax. Finally, the standard-of-care drug cocktail cyclophosphamide and topotecan reduces the apoptotic threshold of neuroblastoma, thus setting the stage for robust combination efficacy with venetoclax. In all cases, these rational combinations translated to in vivo tumor regressions in MYCN-amplified patient-derived xenograft models. Venetoclax is currently being evaluated in pediatric patients in the clinic, including neuroblastoma (NCT03236857). Although establishment of safety is still ongoing, the data disclosed herein indicate rational and clinically actionable combination strategies that could potentiate the activity of venetoclax in patients with amplified MYCN with neuroblastoma.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Amplificación de Genes , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/tratamiento farmacológico , Animales , Apoptosis , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Proliferación Celular , Ciclofosfamida/administración & dosificación , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Sulfonamidas/administración & dosificación , Topotecan/administración & dosificación , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33762304

RESUMEN

MYCN-amplified neuroblastoma is a lethal subset of pediatric cancer. MYCN drives numerous effects in the cell, including metabolic changes that are critical for oncogenesis. The understanding that both compensatory pathways and intrinsic redundancy in cell systems exists implies that the use of combination therapies for effective and durable responses is necessary. Additionally, the most effective targeted therapies exploit an "Achilles' heel" and are tailored to the genetics of the cancer under study. We performed an unbiased screen on select metabolic targeted therapy combinations and correlated sensitivity with over 20 subsets of cancer. We found that MYCN-amplified neuroblastoma is hypersensitive to the combination of an inhibitor of the lactate transporter MCT1, AZD3965, and complex I of the mitochondrion, phenformin. Our data demonstrate that MCT4 is highly correlated with resistance to the combination in the screen and lowly expressed in MYCN-amplified neuroblastoma. Low MCT4 combines with high expression of the MCT2 and MCT1 chaperone CD147 in MYCN-amplified neuroblastoma, altogether conferring sensitivity to the AZD3965 and phenformin combination. The result is simultaneous disruption of glycolysis and oxidative phosphorylation, resulting in dramatic disruption of adenosine triphosphate (ATP) production, endoplasmic reticulum stress, and cell death. In mouse models of MYCN-amplified neuroblastoma, the combination was tolerable at concentrations where it shrank tumors and did not increase white-blood-cell toxicity compared to single drugs. Therefore, we demonstrate that a metabolic combination screen can identify vulnerabilities in subsets of cancer and put forth a metabolic combination therapy tailored for MYCN-amplified neuroblastoma that demonstrates efficacy and tolerability in vivo.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/tratamiento farmacológico , Simportadores/antagonistas & inhibidores , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Basigina/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Amplificación de Genes , Humanos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neuroblastoma/genética , Neuroblastoma/patología , Fenformina/farmacología , Fenformina/uso terapéutico , Pirimidinonas/farmacología , Pirimidinonas/uso terapéutico , Simportadores/metabolismo , Tiofenos/farmacología , Tiofenos/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Cell Chem Biol ; 27(11): 1359-1370.e8, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-32649904

RESUMEN

Multidrug resistance (MDR) in cancer remains a major challenge for the success of chemotherapy. Natural products have been a rich source for the discovery of drugs against MDR cancers. Here, we applied high-throughput cytotoxicity screening of an in-house natural product library against MDR SGC7901/VCR cells and identified that the cyclodepsipeptide verucopeptin demonstrated notable antitumor potency. Cytological profiling combined with click chemistry-based proteomics revealed that ATP6V1G directly interacted with verucopeptin. ATP6V1G, a subunit of the vacuolar H+-ATPase (v-ATPase) that has not been previously targeted, was essential for SGC7901/VCR cell growth. Verucopeptin exhibited strong inhibition of both v-ATPase activity and mTORC1 signaling, leading to substantial pharmacological efficacy against SGC7901/VCR cell proliferation and tumor growth in vivo. Our results demonstrate that targeting v-ATPase via its V1G subunit constitutes a unique approach for modulating v-ATPase and mTORC1 signaling with great potential for the development of therapeutics against MDR cancers.


Asunto(s)
Antineoplásicos/farmacología , Productos Biológicos/farmacología , Depsipéptidos/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Depsipéptidos/síntesis química , Depsipéptidos/química , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Subunidades de Proteína/efectos de los fármacos , Proteómica , ATPasas de Translocación de Protón Vacuolares/metabolismo
13.
Mol Syst Biol ; 15(3): e8323, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30858180

RESUMEN

Most patients with advanced cancer eventually acquire resistance to targeted therapies, spurring extensive efforts to identify molecular events mediating therapy resistance. Many of these events involve synthetic rescue (SR) interactions, where the reduction in cancer cell viability caused by targeted gene inactivation is rescued by an adaptive alteration of another gene (the rescuer). Here, we perform a genome-wide in silico prediction of SR rescuer genes by analyzing tumor transcriptomics and survival data of 10,000 TCGA cancer patients. Predicted SR interactions are validated in new experimental screens. We show that SR interactions can successfully predict cancer patients' response and emerging resistance. Inhibiting predicted rescuer genes sensitizes resistant cancer cells to therapies synergistically, providing initial leads for developing combinatorial approaches to overcome resistance proactively. Finally, we show that the SR analysis of melanoma patients successfully identifies known mediators of resistance to immunotherapy and predicts novel rescuers.


Asunto(s)
Biología Computacional , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Melanoma/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunoterapia , Masculino , Melanoma/tratamiento farmacológico , Terapia Molecular Dirigida , Mutaciones Letales Sintéticas
14.
Clin Cancer Res ; 25(2): 796-807, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30327306

RESUMEN

PURPOSE: KRAS-mutant lung cancers have been recalcitrant to treatments including those targeting the MAPK pathway. Covalent inhibitors of KRAS p.G12C allele allow for direct and specific inhibition of mutant KRAS in cancer cells. However, as for other targeted therapies, the therapeutic potential of these inhibitors can be impaired by intrinsic resistance mechanisms. Therefore, combination strategies are likely needed to improve efficacy.Experimental Design: To identify strategies to maximally leverage direct KRAS inhibition we defined the response of a panel of NSCLC models bearing the KRAS G12C-activating mutation in vitro and in vivo. We used a second-generation KRAS G12C inhibitor, ARS1620 with improved bioavailability over the first generation. We analyzed KRAS downstream effectors signaling to identify mechanisms underlying differential response. To identify candidate combination strategies, we performed a high-throughput drug screening across 112 drugs in combination with ARS1620. We validated the top hits in vitro and in vivo including patient-derived xenograft models. RESULTS: Response to direct KRAS G12C inhibition was heterogeneous across models. Adaptive resistance mechanisms involving reactivation of MAPK pathway and failure to induce PI3K-AKT pathway inactivation were identified as likely resistance events. We identified several model-specific effective combinations as well as a broad-sensitizing effect of PI3K-AKT-mTOR pathway inhibitors. The G12Ci+PI3Ki combination was effective in vitro and in vivo on models resistant to single-agent ARS1620 including patient-derived xenografts models. CONCLUSIONS: Our findings suggest that signaling adaptation can in some instances limit the efficacy of ARS1620 but combination with PI3K inhibitors can overcome this resistance.


Asunto(s)
Alelos , Resistencia a Antineoplásicos/genética , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Silenciador del Gen , Humanos , Ratones , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal/efectos de los fármacos
15.
Cancer Discov ; 8(12): 1582-1597, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30254093

RESUMEN

The prosurvival BCL2 family member MCL1 is frequently dysregulated in cancer. To overcome the significant challenges associated with inhibition of MCL1 protein-protein interactions, we rigorously applied small-molecule conformational restriction, which culminated in the discovery of AMG 176, the first selective MCL1 inhibitor to be studied in humans. We demonstrate that MCL1 inhibition induces a rapid and committed step toward apoptosis in subsets of hematologic cancer cell lines, tumor xenograft models, and primary patient samples. With the use of a human MCL1 knock-in mouse, we demonstrate that MCL1 inhibition at active doses of AMG 176 is tolerated and correlates with clear pharmacodynamic effects, demonstrated by reductions in B cells, monocytes, and neutrophils. Furthermore, the combination of AMG 176 and venetoclax is synergistic in acute myeloid leukemia (AML) tumor models and in primary patient samples at tolerated doses. These results highlight the therapeutic promise of AMG 176 and the potential for combinations with other BH3 mimetics. SIGNIFICANCE: AMG 176 is a potent, selective, and orally bioavailable MCL1 inhibitor that induces a rapid commitment to apoptosis in models of hematologic malignancies. The synergistic combination of AMG 176 and venetoclax demonstrates robust activity in models of AML at tolerated doses, highlighting the promise of BH3-mimetic combinations in hematologic cancers.See related commentary by Leber et al., p. 1511.This article is highlighted in the In This Issue feature, p. 1494.

16.
PLoS Biol ; 16(8): e2005756, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30157175

RESUMEN

Necroptosis is a lytic programmed cell death mediated by the RIPK1-RIPK3-MLKL pathway. The loss of Receptor-interacting serine/threonine-protein kinase 3 (RIPK3) expression and necroptotic potential have been previously reported in several cancer cell lines; however, the extent of this loss across cancer types, as well as its mutational drivers, were unknown. Here, we show that RIPK3 expression loss occurs progressively during tumor growth both in patient tumor biopsies and tumor xenograft models. Using a cell-based necroptosis sensitivity screen of 941 cancer cell lines, we find that escape from necroptosis is prevalent across cancer types, with an incidence rate of 83%. Genome-wide bioinformatics analysis of this differential necroptosis sensitivity data in the context of differential gene expression and mutation data across the cell lines identified various factors that correlate with resistance to necroptosis and loss of RIPK3 expression, including oncogenes BRAF and AXL. Inhibition of these oncogenes can rescue the RIPK3 expression loss and regain of necroptosis sensitivity. This genome-wide analysis also identifies that the loss of RIPK3 expression is the primary factor correlating with escape from necroptosis. Thus, we conclude that necroptosis resistance of cancer cells is common and is oncogene driven, suggesting that escape from necroptosis could be a potential hallmark of cancer, similar to escape from apoptosis.


Asunto(s)
Proteínas Proto-Oncogénicas B-raf/fisiología , Proteínas Proto-Oncogénicas/fisiología , Proteínas Tirosina Quinasas Receptoras/fisiología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Ratones , Necrosis/genética , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto , Tirosina Quinasa del Receptor Axl
17.
Cancer Res ; 78(17): 5094-5106, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30026325

RESUMEN

Asparagine (N)-linked glycosylation is a posttranslational modification essential for the function of complex transmembrane proteins. However, targeting glycosylation for cancer therapy has not been feasible due to generalized effects on all glycoproteins. Here, we perform sensitivity screening of 94 lung cancer cell lines using NGI-1, a small-molecule inhibitor of the oligosaccharyltransferase (OST) that partially disrupts N-linked glycosylation, and demonstrate a selective loss of tumor cell viability. This screen revealed NGI-1 sensitivity in just 11 of 94 (12%) cell lines, with a significant correlation between OST and EGFR inhibitors. In EGFR-mutant non-small cell lung cancer with EGFR tyrosine kinase inhibitor (TKI) resistance (PC9-GR, HCC827-GR, and H1975-OR), OST inhibition maintained its ability to induce cell-cycle arrest and a proliferative block. Addition of NGI-1 to EGFR TKI treatment was synthetic lethal in cells resistant to gefitinib, erlotinib, or osimertinib. OST inhibition invariably disrupted EGFR N-linked glycosylation and reduced activation of receptors either with or without the T790M TKI resistance mutation. OST inhibition also dissociated EGFR signaling from other coexpressed receptors like MET via altered receptor compartmentalization. Translation of this approach to preclinical models was accomplished through synthesis and delivery of NGI-1 nanoparticles, confirmation of in vivo activity through molecular imaging, and demonstration of significant tumor growth delay in TKI-resistant HCC827 and H1975 xenografts. This therapeutic strategy breaks from kinase-targeted approaches and validates N-linked glycosylation as an effective target in tumors driven by glycoprotein signaling.Significance:EGFR-mutant NSCLC is incurable despite the marked sensitivity of these tumors to EGFR TKIs. These findings identify N-linked glycosylation, a posttranslational modification common to EGFR and other oncogenic signaling proteins, as an effective therapeutic target that enhances tumor responses for EGFR-mutant NSCLC. Cancer Res; 78(17); 5094-106. ©2018 AACR.


Asunto(s)
Benzamidas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Hexosiltransferasas/genética , Proteínas de la Membrana/genética , Sulfonamidas/farmacología , Células A549 , Animales , Apoptosis/efectos de los fármacos , Benzamidas/química , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Gefitinib/efectos adversos , Gefitinib/uso terapéutico , Hexosiltransferasas/antagonistas & inhibidores , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Ratones , Mutación/efectos de los fármacos , Nanopartículas/química , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/uso terapéutico , Sulfonamidas/química , Ensayos Antitumor por Modelo de Xenoinjerto
18.
PLoS One ; 13(7): e0201046, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30028875

RESUMEN

Since microRNAs (miRNAs, miRs) have been implicated in oncogenesis, many of them have been identified as therapeutic targets. Previously we have demonstrated that miRNA-10b acts as a master regulator of the viability of metastatic tumor cells and represents a target for therapeutic intervention. We designed and synthesized an inhibitor of miR-10b, termed MN-anti-miR10b. We showed that treatment with MN-anti-miR10b led to durable regression/elimination of established metastases in murine models of metastatic breast cancer. Since miRNA-10b has been associated with various metastatic and non-metastatic cancers, in the present study, we investigated the effect of MN-anti-miR10b in a panel of over 600 cell lines derived from a variety of human malignancies. We observed an effect on the viability of multiple cell lines within each cancer type and a mostly dichotomous response with cell lines either strongly responsive to MN-anti-miR10b or not at all even at maximum dose tested, suggesting a very high specificity of the effect. Genomic modeling of the drug response showed enrichment of genes associated with the proto-oncogene, c-Jun.


Asunto(s)
Antagomirs/farmacología , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Animales , Antagomirs/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Femenino , Genómica , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Metástasis de la Neoplasia , Proto-Oncogenes Mas
19.
Clin Cancer Res ; 24(17): 4256-4270, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29844128

RESUMEN

Purpose: The DEAD-box RNA helicase eIF4A1 carries out the key enzymatic step of cap-dependent translation initiation and is a well-established target for cancer therapy, but no drug against it has entered evaluation in patients. We identified and characterized a natural compound with broad antitumor activities that emerged from the first target-based screen to identify novel eIF4A1 inhibitors.Experimental Design: We tested potency and specificity of the marine compound elatol versus eIF4A1 ATPase activity. We also assessed eIF4A1 helicase inhibition, binding between the compound and the target including binding site mutagenesis, and extensive mechanistic studies in cells. Finally, we determined maximum tolerated dosing in vivo and assessed activity against xenografted tumors.Results: We found elatol is a specific inhibitor of ATP hydrolysis by eIF4A1 in vitro with broad activity against multiple tumor types. The compound inhibits eIF4A1 helicase activity and binds the target with unexpected 2:1 stoichiometry at key sites in its helicase core. Sensitive tumor cells suffer acute loss of translationally regulated proteins, leading to growth arrest and apoptosis. In contrast to other eIF4A1 inhibitors, elatol induces markers of an integrated stress response, likely an off-target effect, but these effects do not mediate its cytotoxic activities. Elatol is less potent in vitro than the well-studied eIF4A1 inhibitor silvestrol but is tolerated in vivo at approximately 100× relative dosing, leading to significant activity against lymphoma xenografts.Conclusions: Elatol's identification as an eIF4A1 inhibitor with in vivo antitumor activities provides proof of principle for target-based screening against this highly promising target for cancer therapy. Clin Cancer Res; 24(17); 4256-70. ©2018 AACR.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Productos Biológicos/farmacología , Factor 4A Eucariótico de Iniciación/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Compuestos de Espiro/farmacología , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Animales , Apoptosis/efectos de los fármacos , Organismos Acuáticos/química , Productos Biológicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Factor 4A Eucariótico de Iniciación/química , Factor 4A Eucariótico de Iniciación/genética , Fibroblastos/efectos de los fármacos , Xenoinjertos , Humanos , Ratones , Modelos Moleculares , Neoplasias/genética , Biosíntesis de Proteínas/efectos de los fármacos , Proteómica , Compuestos de Espiro/química
20.
Sci Transl Med ; 10(441)2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29769286

RESUMEN

High-risk neuroblastoma is often distinguished by amplification of MYCN and loss of differentiation potential. We performed high-throughput drug screening of epigenetic-targeted therapies across a large and diverse tumor cell line panel and uncovered the hypersensitivity of neuroblastoma cells to GSK-J4, a small-molecule dual inhibitor of lysine 27 of histone 3 (H3K27) demethylases ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX), and histone demethylase Jumonji D3 (JMJD3). Mechanistically, GSK-J4 induced neuroblastoma differentiation and endoplasmic reticulum (ER) stress, with accompanying up-regulation of p53 up-regulated modulator of apoptosis (PUMA) and induction of cell death. Retinoic acid (RA)-resistant neuroblastoma cells were sensitive to GSK-J4. In addition, GSK-J4 was effective at blocking the growth of chemorefractory and patient-derived xenograft models of high-risk neuroblastoma in vivo. Furthermore, GSK-J4 and RA combination increased differentiation and ER stress over GSK-J4 effects and limited the growth of neuroblastomas resistant to either drug alone. In MYCN-amplified neuroblastoma, PUMA induction by GSK-J4 sensitized tumors to the B cell lymphoma 2 (BCL-2) inhibitor venetoclax, demonstrating that epigenetic-targeted therapies and BCL-2 homology domain 3 mimetics can be rationally combined to treat this high-risk subset of neuroblastoma. Therefore, H3K27 demethylation inhibition is a promising therapeutic target to treat high-risk neuroblastoma, and H3K27 demethylation can be part of rational combination therapies to induce robust antineuroblastoma activity.


Asunto(s)
Desmetilación , Histonas/metabolismo , Lisina/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Benzazepinas/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Humanos , Ratones Desnudos , Neuroblastoma/genética , Pirimidinas/farmacología , Factores de Riesgo , Sulfonamidas/farmacología , Tretinoina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...