Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Pharm Biopharm ; 191: 57-67, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37582411

RESUMEN

Multi-attribute methods employing mass spectrometry are applied throughout the biopharmaceutical industry for product and process characterization purposes but are not yet widely accepted as a method for batch release and stability testing under the good manufacturing practice (GMP) regime, due to limited experience and level of comfort with the technical, compliance and regulatory aspects of its implementation at quality control (QC) laboratories. This article is the second part of a two-tiered publication aiming at providing guidance for implementation of the multi-attribute method by peptide mapping liquid chromatography mass spectrometry (MAM) in a QC laboratory. The first part [1] focuses on technical considerations, while this second part provides considerations related to GMP compliance and regulatory aspects. This publication has been prepared by a group of industry experts representing 14 globally acting major biotechnology companies under the umbrella of the European Federation of Pharmaceutical Industries and Associations (EFPIA) Manufacturing & Quality Expert Group (MQEG).


Asunto(s)
Industria Farmacéutica , Laboratorios , Espectrometría de Masas/métodos , Cromatografía Liquida/métodos , Control de Calidad
2.
Eur J Pharm Biopharm ; 188: 231-242, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37146738

RESUMEN

Multi-attribute methods employing mass spectrometry are applied throughout the biopharmaceutical industry for product and process characterization purposes but are not yet widely accepted as a method for batch release and stability testing under good manufacturing practice (GMP) due to limited experience and level of comfort with the technical, compliance and regulatory aspects of its implementation at quality control (QC) laboratories. Here, current literature related to the development and application of the multi-attribute method by peptide mapping liquid chromatography mass spectrometry (MAM) is compiled with the aim of providing guidance for the implementation of MAM in a QC laboratory. This article, focusing on technical considerations, is the first part of a two-tiered publication, whereby the second part will focus on GMP compliance and regulatory aspects. This publication has been prepared by a group of industry experts representing 14 globally acting major biotechnology companies under the umbrella of the European Federation of Pharmaceutical Industries and Associations (EFPIA) Manufacturing & Quality Expert Group (MQEG).


Asunto(s)
Industria Farmacéutica , Laboratorios , Espectrometría de Masas/métodos , Cromatografía Liquida/métodos , Control de Calidad
3.
Bioconjug Chem ; 33(6): 1210-1221, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35658441

RESUMEN

Inhibition of intracellular nicotinamide phosphoribosyltransferase (NAMPT) represents a new mode of action for cancer-targeting antibody-drug conjugates (ADCs) with activity also in slowly proliferating cells. To extend the repertoire of available effector chemistries, we have developed a novel structural class of NAMPT inhibitors as ADC payloads. A structure-activity relationship-driven approach supported by protein structural information was pursued to identify a suitable attachment point for the linker to connect the NAMPT inhibitor with the antibody. Optimization of scaffolds and linker structures led to highly potent effector chemistries which were conjugated to antibodies targeting C4.4a (LYPD3), HER2 (c-erbB2), or B7H3 (CD276) and tested on antigen-positive and -negative cancer cell lines. Pharmacokinetic studies, including metabolite profiling, were performed to optimize the stability and selectivity of the ADCs and to evaluate potential bystander effects. Optimized NAMPTi-ADCs demonstrated potent in vivo antitumor efficacy in target antigen-expressing xenograft mouse models. This led to the development of highly potent NAMPT inhibitor ADCs with a very good selectivity profile compared with the corresponding isotype control ADCs. Moreover, we demonstrate─to our knowledge for the first time─the generation of NAMPTi payload metabolites from the NAMPTi-ADCs in vitro and in vivo. In conclusion, NAMPTi-ADCs represent an attractive new payload class designed for use in ADCs for the treatment of solid and hematological cancers.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Nicotinamida Fosforribosiltransferasa , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antígenos B7 , Línea Celular Tumoral , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacología , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/química , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Cancers (Basel) ; 12(11)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233768

RESUMEN

IL3RA (CD123) is the alpha subunit of the interleukin 3 (IL-3) receptor, which regulates the proliferation, survival, and differentiation of hematopoietic cells. IL3RA is frequently expressed in acute myeloid leukemia (AML) and classical Hodgkin lymphoma (HL), presenting an opportunity to treat AML and HL with an IL3RA-directed antibody-drug conjugate (ADC). Here, we describe BAY-943 (IL3RA-ADC), a novel IL3RA-targeting ADC consisting of a humanized anti-IL3RA antibody conjugated to a potent proprietary kinesin spindle protein inhibitor (KSPi). In vitro, IL3RA-ADC showed potent and selective antiproliferative efficacy in a panel of IL3RA-expressing AML and HL cell lines. In vivo, IL3RA-ADC improved survival and reduced tumor burden in IL3RA-positive human AML cell line-derived (MOLM-13 and MV-4-11) as well as in patient-derived xenograft (PDX) models (AM7577 and AML11655) in mice. Furthermore, IL3RA-ADC induced complete tumor remission in 12 out of 13 mice in an IL3RA-positive HL cell line-derived xenograft model (HDLM-2). IL3RA-ADC was well-tolerated and showed no signs of thrombocytopenia, neutropenia, or liver toxicity in rats, or in cynomolgus monkeys when dosed up to 20 mg/kg. Overall, the preclinical results support the further development of BAY-943 as an innovative approach for the treatment of IL3RA-positive hematologic malignancies.

5.
Bioconjug Chem ; 31(8): 1893-1898, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32667786

RESUMEN

Several antibody-drug conjugates (ADCs) have failed to achieve a sufficiently large therapeutic window in patients due to toxicity induced by unspecific payload release in the circulation or ADC uptake into healthy organs. Herein, we describe the successful engineering of ADCs consisting of novel linkers, which are efficiently and selectively cleaved by the tumor-associated protease legumain. ADCs generated via this approach demonstrate high potency and a preferential activation in tumors compared to healthy tissue, thus providing an additional level of safety. A remarkable tolerance of legumain for different linker peptides, including those with just a single asparagine residue, together with a modifier of the physicochemical metabolite profile, proves the broad applicability of this approach for a tailored design of ADCs.


Asunto(s)
Inmunoconjugados/química , Cinesinas/antagonistas & inhibidores , Animales , Cisteína Endopeptidasas/metabolismo , Sistemas de Liberación de Medicamentos , Humanos , Ratones , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Profármacos , Relación Estructura-Actividad , Neoplasias Urológicas/tratamiento farmacológico , Urotelio
6.
Chemistry ; 25(35): 8208-8213, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-30869180

RESUMEN

Many antibody-drug conjugates (ADCs) have failed to achieve a sufficient therapeutic window in clinical studies either due to target-mediated or off-target toxicities. To achieve an additional safety level, a new class of antibody-prodrug conjugates (APDCs) directed against different targets in solid tumors is here described. The tumor-associated lysosomal endopeptidase legumain with a unique cleavage sequence was utilized for APDC metabolism. Legumain-activatable APDCs were as potent as their cathepsin B-activatable analogues. The peptide sequence susceptible to legumain cleavage was optimized for further discrimination of the formation of active metabolites within tumor cells versus healthy tissues, leveraging different tissue-specific legumain activities. Optimized APDCs with slow legumain-mediated conversion reduced preclinically the levels of active metabolite in healthy organs while retaining high activity against different TWEAKR- and B7H3-expressing tumors.


Asunto(s)
Anticuerpos/química , Antineoplásicos/química , Cisteína Endopeptidasas/metabolismo , Inmunoconjugados/química , Cinesinas/antagonistas & inhibidores , Oligopéptidos/química , Profármacos/química , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/metabolismo , Antígenos B7/genética , Antígenos B7/inmunología , Antígenos B7/metabolismo , Línea Celular Tumoral , Xenoinjertos , Humanos , Inmunoconjugados/administración & dosificación , Inmunoconjugados/metabolismo , Ratones
7.
Angew Chem Int Ed Engl ; 57(46): 15243-15247, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30180286

RESUMEN

The number of cytotoxic payload classes successfully employed in antibody-drug conjugates (ADCs) is still rather limited. The identification of ADC payloads with a novel mode of action will increase therapeutic options and potentially increase the therapeutic window. Herein, we describe the utilization of kinesin spindle protein inhibitors (KSPi) as a novel payload class providing highly potent ADCs against different targets, for instance HER-2 or TWEAKR/Fn14. Aspects of technical optimization include the development of different linker attachment sites, the stabilization of ADC linkage to avoid payload deconjugation and finally, the tailor-made design of active metabolites with a long lasting intracellular exposure in the tumor matching the mode of action of KSP inhibition. These KSPi-ADCs are highly potent and selective in vitro and demonstrate in vivo efficacy in a broad panel of tumor models including complete regressions in a patient-derived urothelial cancer model.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Inmunoconjugados/química , Inmunoconjugados/farmacología , Cinesinas/antagonistas & inhibidores , Pirroles/química , Pirroles/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Descubrimiento de Drogas , Humanos , Inmunoconjugados/uso terapéutico , Neoplasias/tratamiento farmacológico , Pirroles/uso terapéutico
8.
Cancer Res ; 76(21): 6331-6339, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27543601

RESUMEN

The fibroblast growth factor receptor FGFR2 is overexpressed in a variety of solid tumors, including breast, gastric, and ovarian tumors, where it offers a potential therapeutic target. In this study, we present evidence of the preclinical efficacy of BAY 1187982, a novel antibody-drug conjugate (ADC). It consists of a fully human FGFR2 monoclonal antibody (mAb BAY 1179470), which binds to the FGFR2 isoforms FGFR2-IIIb and FGFR2-IIIc, conjugated through a noncleavable linker to a novel derivative of the microtubule-disrupting cytotoxic drug auristatin (FGFR2-ADC). In FGFR2-expressing cancer cell lines, this FGFR2-ADC exhibited potency in the low nanomolar to subnanomolar range and was more than 100-fold selective against FGFR2-negative cell lines. High expression levels of FGFR2 in cells correlated with efficient internalization, efficacy, and cytotoxic effects in vitro Pharmacokinetic analyses in mice bearing FGFR2-positive NCI-H716 tumors indicated that the toxophore metabolite of FGFR2-ADC was enriched more than 30-fold in tumors compared with healthy tissues. Efficacy studies demonstrated that FGFR2-ADC treatment leads to a significant tumor growth inhibition or tumor regression of cell line-based or patient-derived xenograft models of human gastric or breast cancer. Furthermore, FGFR2 amplification or mRNA overexpression predicted high efficacy in both of these types of in vivo model systems. Taken together, our results strongly support the clinical evaluation of BAY 1187982 in cancer patients and a phase I study (NCT02368951) has been initiated. Cancer Res; 76(21); 6331-9. ©2016 AACR.


Asunto(s)
Aminobenzoatos/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Inmunoconjugados/uso terapéutico , Neoplasias/tratamiento farmacológico , Oligopéptidos/uso terapéutico , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/análisis , Animales , Anticuerpos Monoclonales Humanizados , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Bioconjug Chem ; 27(4): 911-7, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27031217

RESUMEN

Herein, we describe an extension of our previously reported photomediated disulfide rebridging methodology to the conjugation of peptides and proteins. The methodology proved to be reproducible with various alkynes and different peptides. This study includes the first rebridging of the disulfide bond of a peptide through a thiol-yne reaction with a cyclooctyne. In all cases, the rebridging was proven by MS analyses and confirmed by the absence of olefinic protons on (1)H NMR spectra of the resulting products. Finally, this one-pot reduction thiol-yne conjugation was successfully applied to an antibody Fab fragment with a promising conversion, which set a good ground for the future syntheses of new protein and antibody conjugates.


Asunto(s)
Disulfuros/química , Péptidos/química , Proteínas/química , Compuestos de Sulfhidrilo/química , Espectrometría de Masas , Espectroscopía de Protones por Resonancia Magnética
10.
BMC Biotechnol ; 11: 76, 2011 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-21777442

RESUMEN

BACKGROUND: A promising new approach in cancer therapy is the use of tumor specific antibodies coupled to cytotoxic agents. Currently these immunoconjugates are prepared by rather unspecific coupling chemistries, resulting in heterogeneous products. As the drug load is a key parameter for the antitumor activity, site-specific strategies are desired. Expressed protein ligation (EPL) and protein trans-splicing (PTS) are methods for the specific C-terminal modification of a target protein. Both include the expression as an intein fusion protein, followed by the exchange of the intein for a functionalized moiety. RESULTS: A full-length IgG specific for fibronectin ED-B was expressed as fusion protein with an intein (Mxe GyrA or Npu DnaE) attached to each heavy chain. In vitro protocols were established to site-specifically modify the antibodies in high yields by EPL or PTS, respectively. Although reducing conditions had to be employed during the process, the integrity or affinity of the antibody was not affected. The protocols were used to prepare immunoconjugates containing two biotin molecules per antibody, attached to the C-termini of the heavy chains. CONCLUSION: Full-length antibodies can be efficiently and site-specifically modified at the C-termini of their heavy chains by intein-fusion technologies. The described protocols can be used to prepare immunoconjugates of high homogeneity and with a defined drug load of two. The attachment to the C-termini is expected to retain the affinity and effector functions of the antibodies.


Asunto(s)
Fibronectinas/inmunología , Inmunoconjugados/química , Inmunoglobulina G/química , Inteínas/genética , Ingeniería de Proteínas/métodos , Proteínas Recombinantes de Fusión/química , Secuencia de Aminoácidos , Electroforesis en Gel de Poliacrilamida , Humanos , Inmunoconjugados/inmunología , Inmunoconjugados/metabolismo , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Trans-Empalme
11.
Chembiochem ; 12(11): 1774-80, 2011 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-21656631

RESUMEN

Sortase A from Staphylococcus aureus attracts growing interest for its use in biotechnological protein modification. This enzyme binds to a short signal sequence at the C terminus of a target protein, cleaves it by formation of an acyl-enzyme intermediate, and subsequently attaches an oligoglycine with a peptide bond. In this work, we explored its usability for the modification of the L19 Fab fragment (specific for fibronectin ED-B), a promising candidate for antibody-based cancer therapy. The Fab fragment was expressed with a sortase signal sequence attached to its light chain, and was successfully modified with a fluorescent oligoglycine probe in good yield. Our interest focused on performance under conditions of limited oligoglycine concentrations. Two unproductive side reactions of sortase were observed. The first was hydrolysis of the acyl-enzyme intermediate; in the second, sortase accepted the ε-amino group of lysine as substrate, thereby resulting in polypeptide crosslinking. In case of the L19 Fab fragment, it led to the covalent connection of the heavy and light chains. Both side reactions were effectively suppressed by sufficient concentrations of the oligoglycine probe.


Asunto(s)
Aminoaciltransferasas/química , Proteínas Bacterianas/química , Cisteína Endopeptidasas/química , Fragmentos Fab de Inmunoglobulinas/química , Lisina/química , Agua/química , Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Humanos , Hidrólisis , Fragmentos Fab de Inmunoglobulinas/metabolismo , Lisina/metabolismo , Modelos Moleculares , Péptidos/metabolismo , Especificidad por Sustrato , Agua/metabolismo
12.
Proteomics ; 6(10): 2947-58, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16619308

RESUMEN

Authentic biomarkers, distilling the essence of a complex, functionally significant process in a mammalian system into a precise, physicochemical measurement have been implicated as a tool of increasing importance for drug discovery and development. However, even in spite of recent technological advances, validating a new biomarker candidate, where generation of suitable antibodies is required, is still a long-lasting task. Methods to accelerate initial validation by MS approaches have been suggested, but all methods described so far are associated with serious drawbacks, finally leading to non-generic methods of detection and quantification. Moreover, when complex body fluids are used as samples, efficient debulking strategies are crucial to open a window of analytical sensitivity in the ng/mL range, where many diagnostically relevant analytes are present. Here we report the proof-of-principle of a multi-dimensional strategy for accelerated initial validation of biomarker candidates by MS, which promises to be generally applicable, sensitive and quantitative. The method presented employs a combination of electrophoretic and chromatographic steps on the peptide level, followed by MS quantification using isotopically labeled synthetic peptides as internal standards. Our proposed workflow includes up to four dimensions, finally resulting in a desired LOD sufficient to detect and quantify diagnostically relevant analytes from complex samples. Although the current state of the method only represents a starting point for further validation and development, it reveals great potential in biomarker validation.


Asunto(s)
Proteínas Sanguíneas/análisis , Animales , Biomarcadores/sangre , Cromatografía Líquida de Alta Presión , Electroforesis/métodos , Estudios de Factibilidad , Humanos , Espectrometría de Masas , Ratones , Péptidos/análisis , Proteómica , Espectrina/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...