Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Vet Res ; 85(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38457927

RESUMEN

OBJECTIVE: Compare immune responses induced by 2 commercial intranasal (IN) modified-live viral (MLV) vaccines given individually or coadministered and evaluate prevention of infection and lung pathology following bovine herpesvirus-1 (BHV-1) challenge. ANIMALS: 36 male Holstein calves (ages, 5 to 12 days). METHODS: In a randomized complete block design, each calf received an IN injection of either vaccine diluent (Placebo), an MLV vaccine containing bovine herpesvirus-1 (BHV-1; N3), bovine coronavirus vaccine (BC), or both N3 and BC (BC + N3) with a booster 4 weeks later. Nasal secretions and blood were collected weekly. Three weeks after the booster, the calves were challenged with BHV-1, sampled for virus shedding, and euthanized 10 days later to quantify lung pathology. The study period was September 7, 2020, to April 6, 2021. RESULTS: Calves were seropositive for BHV-1 and BC before vaccination. No significant difference in BC-specific serum immunoglobin G and nasal immunoglobin A antibody responses in the BC versus BC + N3 group or BHV-1-specific serum immunoglobin G and nasal immunoglobin A antibody responses in the N3 versus BC + N3 group. Cytokine responses to BHV-1 and BC did not differ among groups. BHV-1 shedding after challenge was significantly reduced in N3 groups versus Placebo and BC. There was a significant reduction in lung pathology in the N3 + BC group versus Placebo. CLINICAL RELEVANCE: This study provides evidence an MLV vaccine containing BHV-1 and an MLV BC vaccine can be coadministered to neonatal calves without significantly altering immune responses to the 2 viruses or compromising the prevention of BHV-1 respiratory disease. Calves receiving the BC + N3 vaccine had a significant reduction in lung pathology after BHV-1 aerosol challenge.


Asunto(s)
Administración Intranasal , Animales Recién Nacidos , Enfermedades de los Bovinos , Infecciones por Coronavirus , Coronavirus Bovino , Infecciones por Herpesviridae , Herpesvirus Bovino 1 , Vacunas Atenuadas , Vacunas Virales , Animales , Bovinos , Herpesvirus Bovino 1/inmunología , Administración Intranasal/veterinaria , Masculino , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Coronavirus Bovino/inmunología , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/virología , Enfermedades de los Bovinos/inmunología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/prevención & control , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Rinotraqueítis Infecciosa Bovina/prevención & control , Rinotraqueítis Infecciosa Bovina/inmunología , Esparcimiento de Virus , Anticuerpos Antivirales/sangre , Distribución Aleatoria
2.
Vet Immunol Immunopathol ; 242: 110352, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34773748

RESUMEN

An effective method to isolate functional eosinophils from blood and tissues is required to analyze the multiple roles eosinophils play in innate immunity and tissue homeostasis. Highspeed cell sorting was used to isolate bovine eosinophils from blood polymorphonuclear (PMN) cells and from small intestine intraepithelial leukocytes. Eosinophils and neutrophils were purified from bovine blood with highspeed cell sorting after gating on autofluorescence (FL1) high and low PMN subpopulations. Highspeed sorting of intestinal eosinophils was accomplished by using a combination of positive (CD45+, CD11cLow, side scatterHigh) and negative (CD3-) selection parameters. Eosinophils sorted from blood PMNs were 88.6 ± 5.8 % (mean + 1 SD; n = 4) pure and yielded significantly (p < 0.05) more RNA than purified neutrophils. Analysis of Toll-like receptor (TLR) gene expression and TLR ligand-induced pro-inflammatory cytokine (IL-1, IL-6, IL-8, and TNFα) gene expression demonstrated significant (p < 0.01) functional differences between blood eosinophils and neutrophils. Eosinophils varied between 14.7 % to 29.3 % of CD45+ IELs and purity of sorted intestinal eosinophils was 95 + 3.5 % (mean + 1SD; n = 5). A comparison of mucosal and blood eosinophils revealed significant (p < 0.01) differences in TLR gene expression, supporting the hypothesis that functionally distinct eosinophil populations are present in blood and tissues. In conclusion, highspeed cell sorting provides an effective method to isolate viable eosinophils from blood and tissues that can then be used for transcriptome analyses and in vitro function assays.


Asunto(s)
Eosinófilos , Intestino Delgado/citología , Recuento de Leucocitos , Animales , Bovinos , Eosinófilos/citología , Recuento de Leucocitos/veterinaria , Neutrófilos
3.
J Am Vet Med Assoc ; 258(10): 1119-1129, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33944597

RESUMEN

OBJECTIVE: To compare immune responses induced by 2 commercially available vaccines with a bovine herpesvirus type 1 (BHV1) component following intranasal (IN) administration to colostrum-fed calves. ANIMALS: 90 male Holstein calves (ages, 5 to 14 days). PROCEDURES: In a randomized complete block design, each calf received 2 mL (1 mL/nostril) of vaccine A (n = 30), vaccine B (30), or saline (0.9% NaCl) solution (30) on day 0. Blood samples were collected for determination of serum anti-BHV1 IgG titer, and nasal fluid (NF) samples were collected for determination of interferon (IFN)-α and IFN-γ concentrations and for secretory IgA titers against BHV1, Mannheimia haemolytica, and Pasteurella multocida at predetermined times for 42 days after vaccination. RESULTS: All calves were seropositive for anti-BHV1 IgG, and the mean anti-BHV1 IgG titer did not differ significantly among the 3 groups at any time. Both vaccines induced significant transient increases in NF IFN-α and IFN-γ concentrations. On day 5, mean IFN-α concentration and the proportion of calves with detectable IFN-α concentrations for the vaccine A group were significantly greater than those for the vaccine B and control groups. On day 42, the mean NF anti-P multocida IgA titers for both vaccine groups were significantly greater than that of the control group. CONCLUSIONS AND CLINICAL RELEVANCE: Both vaccines induced innate and acquired immune responses in calves with colostral antibodies. The magnitude of the IFN-α response and proportion of calves with detectable IFN-α differed between the 2 vaccine groups. Both vaccines appeared to enhance the IgA response against P multocida.


Asunto(s)
Enfermedades de los Bovinos , Vacunas Virales , Animales , Anticuerpos Antivirales , Bovinos , Enfermedades de los Bovinos/prevención & control , Calostro , Femenino , Inmunidad , Masculino , Embarazo , Vacunación/veterinaria
4.
Front Bioinform ; 1: 694324, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36303765

RESUMEN

Antibodies are critical effector molecules of the humoral immune system. Upon infection or vaccination, populations of antibodies are generated which bind to various regions of the invading pathogen or exogenous agent. Defining the reactivity and breadth of this antibody response provides an understanding of the antigenic determinants and enables the rational development and assessment of vaccine candidates. High-resolution analysis of these populations typically requires advanced techniques such as B cell receptor repertoire sequencing, mass spectrometry of isolated immunoglobulins, or phage display libraries that are dependent upon equipment and expertise which are prohibitive for many labs. High-density peptide microarrays representing diverse populations of putative linear epitopes (immunoarrays) are an effective alternative for high-throughput examination of antibody reactivity and diversity. While a promising technology, widespread adoption of immunoarrays has been limited by the need for, and relative absence of, user-friendly tools for consideration and visualization of the emerging data. To address this limitation, we developed EPIphany, a software platform with a simple web-based user interface, aimed at biological users, that provides access to important analysis parameters, data normalization options, and a variety of unique data visualization options. This platform provides researchers the greatest opportunity to extract biologically meaningful information from the immunoarray data, thereby facilitating the discovery and development of novel immuno-therapeutics.

5.
Front Immunol ; 11: 586659, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329565

RESUMEN

Mycobacterial diseases of cattle are responsible for considerable production losses worldwide. In addition to their importance in animals, these infections offer a nuanced approach to understanding persistent mycobacterial infection in native host species. Mycobacteriumavium ssp. paratuberculosis (MAP) is an enteric pathogen that establishes a persistent, asymptomatic infection in the small intestine. Difficulty in reproducing infection in surrogate animal models and limited understanding of mucosal immune responses that control enteric infection in the natural host have been major barriers to MAP vaccine development. We previously developed a reproducible challenge model to establish a consistent MAP infection using surgically isolated intestinal segments prepared in neonatal calves. In the current study, we evaluated whether intestinal segments could be used to screen parenteral vaccines that alter mucosal immune responses to MAP infection. Using Silirum® - a commercial MAP bacterin - we demonstrate that intestinal segments provide a platform for assessing vaccine efficacy within a relatively rapid period of 28 days post-infection. Significant differences between vaccinates and non-vaccinates could be detected using quantitative metrics including bacterial burden in intestinal tissue, MAP shedding into the intestinal lumen, and vaccine-induced mucosal immune responses. Comparing vaccine-induced responses in mucosal leukocytes isolated from the site of enteric infection versus blood leukocytes revealed substantial inconsistences between these immune compartments. Moreover, parenteral vaccination with Silirum did not induce equal levels of protection throughout the small intestine. Significant control of MAP infection was observed in the continuous but not the discrete Peyer's patches. Analysis of these regional mucosal immune responses revealed novel correlates of immune protection associated with reduced infection that included an increased frequency of CD335+ innate lymphoid cells, and increased expression of IL21 and IL27. Thus, intestinal segments provide a novel model to accelerate vaccine screening and discovery by testing vaccines directly in the natural host and provides a unique opportunity to interrogate mucosal immune responses to mycobacterial infections.


Asunto(s)
Vacunas Bacterianas/inmunología , Enfermedades de los Bovinos/inmunología , Inmunidad Mucosa/inmunología , Paratuberculosis/inmunología , Paratuberculosis/prevención & control , Animales , Bovinos , Enfermedades de los Bovinos/prevención & control , Mycobacterium avium subsp. paratuberculosis/inmunología
6.
Sci Rep ; 10(1): 11546, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665671

RESUMEN

Inter-individual variance in host immune responses following vaccination can result in failure to develop protective immunity leaving individuals at risk for infection in addition to compromising herd immunity. While developing more efficacious vaccines is one strategy to mitigate this problem, predicting vaccine responsiveness prior to vaccination could inform which individuals require adjunct disease management strategies. To identify biomarkers of vaccine responsiveness, a cohort of pigs (n = 120) were vaccinated and pigs representing the high (n = 6; 90th percentile) and low (n = 6; 10th percentile) responders based on vaccine-specific antibody responses following vaccination were further analyzed. Kinase-mediated phosphorylation events within peripheral blood mononuclear cells collected prior to vaccination identified 53 differentially phosphorylated peptides when comparing low responders with high responders. Functional enrichment analysis revealed pro-inflammatory cytokine signaling pathways as dysregulated, and this was further substantiated by detection of higher (p < 0.01) concentrations of interferon-gamma in plasma of low responders compared to high responders prior to vaccination. In addition, low responder pigs with high plasma interferon-gamma showed lower (p < 0.01) birth weights than high responder pigs. These associations between vaccine responsiveness, cytokine signaling within peripheral immune cells, and body weight in pigs provide both evidence and insight into potential biomarkers for identifying low responders to vaccination.


Asunto(s)
Vacunas Bacterianas/inmunología , Leucocitos Mononucleares/metabolismo , Vacunación/veterinaria , Animales , Animales Recién Nacidos , Anticuerpos Antibacterianos/sangre , Biomarcadores/metabolismo , Citocinas/sangre , Femenino , Inmunoglobulina G/sangre , Inflamación , Interferón gamma/sangre , Masculino , Mycoplasma hyopneumoniae , Fosforilación , Neumonía Porcina por Mycoplasma/inmunología , Neumonía Porcina por Mycoplasma/prevención & control , Transducción de Señal , Porcinos , Transcripción Genética
7.
Front Immunol ; 11: 1020, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32547548

RESUMEN

Chronic enteric Mycobacterium avium ssp. paratuberculosis (MAP) infections are endemic in ruminants globally resulting in significant production losses. The mucosal immune responses occurring at the site of infection, specifically in Peyer's patches (PP), are not well-understood. The ruminant small intestine possesses two functionally distinct PPs. Discrete PPs function as mucosal immune induction sites and a single continuous PP, in the terminal small intestine, functions as a primary lymphoid tissue for B cell repertoire diversification. We investigated whether MAP infection of discrete vs. continuous PPs resulted in the induction of significantly different pathogen-specific immune responses and persistence of MAP infection. Surgically isolated intestinal segments in neonatal calves were used to target MAP infection to individual PPs. At 12 months post-infection, MAP persisted in continuous PP (n = 4), but was significantly reduced (p = 0.046) in discrete PP (n = 5). RNA-seq analysis revealed control of MAP infection in discrete PP was associated with extensive transcriptomic changes (1,707 differentially expressed genes) but MAP persistent in continuous PP elicited few host responses (4 differentially expressed genes). Cytokine gene expression in tissue and MAP-specific recall responses by mucosal immune cells isolated from PP, lamina propria and mesenteric lymph node revealed interleukin (IL)22 and IL27 as unique correlates of protection associated with decreased MAP infection in discrete PP. This study provides the first description of mucosal immune responses occurring in bovine discrete jejunal PPs and reveals that a significant reduction in MAP infection is associated with specific cytokine responses. Conversely, MAP infection persists in the continuous ileal PP with minimal perturbation of host immune responses. These data reveal a marked dichotomy in host-MAP interactions within the two functionally distinct PPs of the small intestine and identifies mucosal immune responses associated with the control of a mycobacterial infection in the natural host.


Asunto(s)
Linfocitos B/inmunología , Mucosa Intestinal/fisiología , Mycobacterium avium/fisiología , Paratuberculosis/inmunología , Ganglios Linfáticos Agregados/inmunología , Animales , Animales Recién Nacidos , Antígenos Bacterianos/inmunología , Bovinos , Diferenciación Celular , Células Cultivadas , Selección Clonal Mediada por Antígenos , Interacciones Huésped-Patógeno , Inmunidad Mucosa/genética , Interleucina-27/genética , Interleucina-27/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Mucosa Intestinal/microbiología , Técnicas de Cultivo de Órganos , Análisis de Secuencia de ARN , Transcriptoma , Interleucina-22
8.
Vaccine ; 37(51): 7455-7462, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31590936

RESUMEN

Bovine respiratory disease (BRD) remains a major health problem despite extensive use of vaccines during the post-weaning period. Apparent vaccine failure is attributed, in part, to primary vaccination during the period of greatest risk for BRD, providing inadequate time for onset of protective immunity. The current study investigated whether intranasal (IN) vaccination of 3-6 week old calves with a modified-live viral (MLV) vaccine induced sufficient immune memory to prevent respiratory disease and accelerate onset of protective immunity 5 months later. Vaccine groups included naïve controls, a single IN vaccination at 3-6 weeks of age, primary IN vaccination at 6 months, and either an IN or subcutaneous (SC) booster vaccination at 6 months (n = 10/group). All calves were challenged with BHV-1 four days after vaccination at 6 months of age. Primary IN vaccination at 6 months did not significantly reduce clinical disease but significantly (P < 0.01) reduced virus shedding. A single IN vaccination at 3-6 weeks of age significantly (P < 0.05) reduced weight loss but did not reduce fever or virus shedding. Both IN and SC booster vaccinations, significantly (P < 0.01) reduced clinical disease but virus shedding was significantly (P < 0.001) reduced only by IN booster vaccination. Reduction in virus shedding was significantly (P < 0.01) greater following booster versus primary IN vaccination at 6 months. All vaccination regimes significantly (P < 0.01) reduced secondary bacterial pneumonia and altered interferon responses relative to naïve controls. Only IN booster vaccination significantly (P < 0.05) increased BHV-1 specific IgA in nasal secretions. These results confirm primary MLV IN vaccination at 3 to 6 weeks of age, when virus neutralizing maternal antibody was present, induced immune memory with a 5 month duration. This immune memory supported rapid onset of protective immunity four days after an IN booster vaccination.


Asunto(s)
Herpesvirus Bovino 1/inmunología , Vacunas contra Herpesvirus/administración & dosificación , Inmunización Secundaria/métodos , Memoria Inmunológica/efectos de los fármacos , Rinotraqueítis Infecciosa Bovina/prevención & control , Neumonía Bacteriana/prevención & control , Administración Intranasal , Animales , Animales Recién Nacidos , Anticuerpos Antivirales/sangre , Bovinos , Calostro/química , Calostro/inmunología , Femenino , Herpesvirus Bovino 1/efectos de los fármacos , Herpesvirus Bovino 1/patogenicidad , Inmunidad Mucosa/efectos de los fármacos , Inmunoglobulina A/sangre , Rinotraqueítis Infecciosa Bovina/inmunología , Rinotraqueítis Infecciosa Bovina/mortalidad , Rinotraqueítis Infecciosa Bovina/virología , Masculino , Neumonía Bacteriana/inmunología , Neumonía Bacteriana/microbiología , Neumonía Bacteriana/mortalidad , Embarazo , Análisis de Supervivencia , Vacunación/métodos , Vacunas Atenuadas , Carga Viral/efectos de los fármacos , Esparcimiento de Virus/efectos de los fármacos , Pérdida de Peso/efectos de los fármacos
9.
Front Microbiol ; 10: 1706, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396198

RESUMEN

Pioneer microbiota colonizing the newborn gastrointestinal tract has long-lasting effects on host health. Restoration of the gut microbial community, following dysbiosis during the neonatal period, may be one strategy to prevent undesirable health outcomes linked to an altered neonatal gut microbiome. Without appropriate animal models that recreate the prolonged human neonatal developmental period it is not possible to effectively analyze interventions designed to restore regional microbial populations. Our study used a lamb model in which intestinal segments were surgically isolated (blind-ended) in fetal lambs to create early microbial dysbiosis by delaying post-natal exposure to intestinal ingesta. Intestinal segments isolated in utero retained blood flow, innervation, and lymphatic drainage through the mesenteric attachment. Continuity of the fetal gastro-intestinal tract was re-established by side-to-side anastomosis of intestine proximal and distal to each isolated intestinal segment. Microbial restoration was then implemented in neonatal lambs by reconnecting a portion of the in utero isolated intestinal segments to adjacent intestinal tract 1 and 7 days after birth. Bacterial communities colonizing the adjacent intestine, in utero isolated intestinal segments, and reconnected intestinal segments were profiled using 16S amplicon sequencing on days 1, 7, and 56 of age. The in utero isolated intestinal segments were colonized 1 day after birth but the density of active bacteria was reduced and community composition altered when compared to adjacent intestine. Proteobacteria dominated the adjacent small intestine at early time points (day 1 and day 7) with a shift to primarily Firmicutes on day 56, consistent with establishment of an anaerobic bacterial community. In contrast, Proteobacteria persisted as the predominant community for 56 days in the in utero isolated intestinal segments. There was, however, almost full restoration of the microbial community composition in the in utero isolated intestinal segments following reconnection to the adjacent intestine. The density of beneficial bacteria, especially Bifidobacterium, remained significantly lower in the reconnected intestinal segments at 56 days when compared to adjacent intestine. Post-natal persistence of a stable pioneer community (Proteobacteria) in the in utero isolated intestinal segments provides a model system to study the temporal effects of regional microbial dysbiosis throughout a prolonged neonatal period.

10.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30658973

RESUMEN

A lack of information on the intestinal microbiome of neonatal calves prevents the use of microbial intervention strategies to improve calf gut health. This study profiled the taxonomic and functional composition of the small intestinal luminal microbiome of neonatal calves using whole-genome sequencing of the metagenome, aiming to understand the dynamics of microbial establishment during early life. Despite highly individualized microbial communities, we identified two distinct taxonomy-based clusters from the collective luminal microbiomes comprising a high level of either Lactobacillus or Bacteroides Among the clustered microbiomes, Lactobacillus-dominant ileal microbiomes had significantly lower abundances of Bacteroides, Prevotella, Roseburia, Ruminococcus, and Veillonella compared to the Bacteroides-dominated ileal microbiomes. In addition, the upregulated ileal genes of the Lactobacillus-dominant calves were related to leukocyte and lymphocyte chemotaxis, the cytokine/chemokine-mediated signaling pathway, and inflammatory responses, while the upregulated ileal genes of the Bacteroides-dominant calves were related to cell adhesion, response to stimulus, cell communication and regulation of mitogen-activated protein kinase cascades. The functional profiles of the luminal microbiomes also revealed two distinct clusters consisting of functions related to either high protein metabolism or sulfur metabolism. A lower abundance of Bifidobacterium and a higher abundance of sulfur-reducing bacteria (SRB) were observed in the sulfur metabolism-dominant cluster (0.2% ± 0.1%) compared to the protein metabolism-dominant cluster (12.6% ± 5.7%), suggesting an antagonistic relationship between SRB and Bifidobacterium, which both compete for cysteine. These distinct taxonomic and functional clusters may provide a framework to further analyze interactions between the intestinal microbiome and the immune function and health of neonatal calves.IMPORTANCE Dietary interventions to manipulate neonatal gut microbiota have been proposed to generate long-term impacts on hosts. Currently, our understanding of the early gut microbiome of neonatal calves is limited to 16S rRNA gene amplicon based microbial profiling, which is a barrier to developing dietary interventions to improve calf gut health. The use of a metagenome sequencing-based approach in the present study revealed high individual animal variation in taxonomic and functional abundance of intestinal microbiome and potential impacts of early microbiome on mucosal immune responses during the preweaning period. During this developmental period, age- and diet-related changes in microbial diversity, richness, density, and the abundance of taxa and functions were observed. A correlation-based approach to further explore the individual animal variation revealed potential enterotypes that can be linked to calf gut health, which may pave the way to developing strategies to manipulate the microbiome and improve calf health.


Asunto(s)
Animales Recién Nacidos/microbiología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Microbioma Gastrointestinal , Intestino Delgado/microbiología , Animales , Bacterias/genética , Bovinos , ADN Bacteriano/genética , Heces/microbiología , Femenino , Masculino , Metagenoma , Filogenia , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...