Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biomol Tech ; 34(1)2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37089871

RESUMEN

The National Institutes of Health (NIH) offers many types of funding programs and opportunities to support biomedical research. The best known of these programs, the NIH Research Project Grant Program, or R01, supports investigator-initiated research projects. Another well-known funding mechanism is the NIH Shared Instrumentation Grant Program, also known as SIG or S10. This year marks the S10's 40th anniversary. To commemorate this triumphant milestone and a successful 40 years, let's first review how this legendary and highly impactful program started.


Asunto(s)
Investigación Biomédica , National Institutes of Health (U.S.) , Estados Unidos , Humanos , Investigadores
2.
Mamm Genome ; 33(1): 203-212, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34313795

RESUMEN

The Mutant Mouse Resource and Research Center (MMRRC) Program is the pre-eminent public national mutant mouse repository and distribution archive in the USA, serving as a national resource of mutant mice available to the global scientific community for biomedical research. Established more than two decades ago with grants from the National Institutes of Health (NIH), the MMRRC Program supports a Consortium of regionally distributed and dedicated vivaria, laboratories, and offices (Centers) and an Informatics Coordination and Service Center (ICSC) at three academic teaching and research universities and one non-profit genetic research institution. The MMRRC Program accepts the submission of unique, scientifically rigorous, and experimentally valuable genetically altered and other mouse models donated by academic and commercial scientists and organizations for deposition, maintenance, preservation, and dissemination to scientists upon request. The four Centers maintain an archive of nearly 60,000 mutant alleles as live mice, frozen germplasm, and/or embryonic stem (ES) cells. Since its inception, the Centers have fulfilled 13,184 orders for mutant mouse models from 9591 scientists at 6626 institutions around the globe. Centers also provide numerous services that facilitate using mutant mouse models obtained from the MMRRC, including genetic assays, microbiome analysis, analytical phenotyping and pathology, cryorecovery, mouse husbandry, infectious disease surveillance and diagnosis, and disease modeling. The ICSC coordinates activities between the Centers, manages the website (mmrrc.org) and online catalog, and conducts communication, outreach, and education to the research community. Centers preserve, secure, and protect mutant mouse lines in perpetuity, promote rigor and reproducibility in scientific experiments using mice, provide experiential training and consultation in the responsible use of mice in research, and pursue cutting edge technologies to advance biomedical studies using mice to improve human health. Researchers benefit from an expansive list of well-defined mouse models of disease that meet the highest standards of rigor and reproducibility, while donating investigators benefit by having their mouse lines preserved, protected, and distributed in compliance with NIH policies.


Asunto(s)
Investigación Biomédica , Modelos Animales de Enfermedad , Ratones , National Institutes of Health (U.S.) , Animales , Humanos , Ratones/genética , Reproducibilidad de los Resultados , Estados Unidos
6.
ILAR J ; 58(1): 115-128, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575443

RESUMEN

Difficulties in reproducing published research findings have garnered a lot of press in recent years. As a funder of biomedical research, the National Institutes of Health (NIH) has taken measures to address underlying causes of low reproducibility. Extensive deliberations resulted in a policy, released in 2015, to enhance reproducibility through rigor and transparency. We briefly explain what led to the policy, describe its elements, provide examples and resources for the biomedical research community, and discuss the potential impact of the policy on translatability with a focus on research using animal models. Importantly, while increased attention to rigor and transparency may lead to an increase in the number of laboratory animals used in the near term, it will lead to more efficient and productive use of such resources in the long run. The translational value of animal studies will be improved through more rigorous assessment of experimental variables and data, leading to better assessments of the translational potential of animal models, for the benefit of the research community and society.


Asunto(s)
Modelos Animales de Enfermedad , Almacenamiento y Recuperación de la Información/normas , Animales , Investigación Biomédica , Reproducibilidad de los Resultados
8.
J Biomol Tech ; 26(1): 1-3, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25649473

RESUMEN

The U.S. National Institutes of Health (NIH) invests substantial resources in core research facilities (cores) that support research by providing advanced technologies and scientific and technical expertise as a shared resource. In 2010, the NIH issued an initiative to consolidate multiple core facilities into a single, more efficient core. Twenty-six institutions were awarded supplements to consolidate a number of similar core facilities. Although this approach may not work for all core settings, this effort resulted in consolidated cores that were more efficient and of greater benefit to investigators. The improvements in core operations resulted in both increased services and more core users through installation of advanced instrumentation, access to higher levels of management expertise; integration of information management and data systems; and consolidation of billing; purchasing, scheduling, and tracking services. Cost recovery to support core operations also benefitted from the consolidation effort, in some cases severalfold. In conclusion, this program of core consolidation resulted in improvements in the effective operation of core facilities, benefiting both investigators and their supporting institutions.


Asunto(s)
Investigación Biomédica/economía , National Institutes of Health (U.S.)/economía , Apoyo a la Investigación como Asunto , Animales , Humanos , National Institutes of Health (U.S.)/organización & administración , Estados Unidos
9.
Dis Model Mech ; 1(2-3): 99-102, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19048071

RESUMEN

Funding from external sources is the lifeline for most biomedical research scientists. In the USA, the National Institutes of Health (NIH), composed of 27 institutes and centers, is the primary federal agency for conducting and supporting medical research. One of these centers, the National Center for Research Resources (NCRR) provides financial support and resources to clinical or translational scientists working to understand human disease. Through the Division of Comparative Medicine, the NCRR funds projects focused on the development and use of model organisms to understand, diagnose, prevent and treat disease. Here, officials within the NCRR's Division of Comparative Medicine discuss some of the funding opportunities and resources available to researchers who use model organisms, and their perspectives on the future of model organism research.


Asunto(s)
Interpretación Estadística de Datos , Modelos Animales de Enfermedad , Animales , Humanos , National Institutes of Health (U.S.) , Especificidad de la Especie , Estados Unidos
11.
Nat Genet ; 36(9): 921-4, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15340423

RESUMEN

Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers. It is time to harness new technologies and efficiencies of production to mount a high-throughput international effort to produce and phenotype knockouts for all mouse genes, and place these resources into the public domain.


Asunto(s)
Ratones Noqueados , Creación de Embriones para Investigación , Alelos , Animales , Investigación Genética , Ratones , Fenotipo , Creación de Embriones para Investigación/economía
12.
J Virol ; 77(5): 3119-30, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12584337

RESUMEN

We have studied the induction of neutralizing antibodies by in vivo expression of the human immunodeficiency virus type 1 (HIV-1) envelope by using a Venezuelan equine encephalitis virus (VEE) replicon system with mice and rabbits. The HIV-1 envelope, clone R2, has broad sensitivity to cross-reactive neutralization and was obtained from a donor with broadly cross-reactive, primary virus-neutralizing antibodies (donor of reference serum, HIV-1-neutralizing serum 2 [HNS2]). It was expressed as gp160, as secreted gp140, and as gp160deltaCT with the cytoplasmic tail deleted. gp140 was expressed in vitro at a high level and was predominantly uncleaved oligomer. gp160deltaCT was released by cells in the form of membrane-bound vesicles. gp160deltaCT induced stronger neutralizing responses than the other forms. Use of a helper plasmid for replicon particle packaging, in which the VEE envelope gene comprised a wild-type rather than a host range-adapted sequence, also enhanced immunogenicity. Neutralizing activity fractionated with immunoglobulin G. This activity was cross-reactive among a panel of five nonhomologous primary clade B strains and a Chinese clade C strain and minimally reactive against a Chinese clade E (circulating recombinant form 1) strain. The comparative neutralization of these strains by immune mouse sera was similar to the relative neutralizing effects of HNS2, and responses induced in rabbits were similar to those induced in mice. Together, these results demonstrate that neutralizing antibody responses can be induced in mice within 2 to 3 months that are similar in potency and cross-reactivity to those found in the chronically infected, long-term nonprogressive donor of HNS2. These findings support the expectation that induction of highly cross-reactive HIV-1 primary virus-neutralizing activity by vaccination may be realized.


Asunto(s)
Vacunas contra el SIDA/inmunología , Virus de la Encefalitis Equina Venezolana/inmunología , Productos del Gen env/inmunología , Anticuerpos Anti-VIH/sangre , Anticuerpos Anti-VIH/inmunología , Animales , Reacciones Cruzadas , Virus de la Encefalitis Equina Venezolana/genética , Productos del Gen env/genética , Vectores Genéticos , Proteínas gp160 de Envoltorio del VIH/genética , Proteínas gp160 de Envoltorio del VIH/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , Humanos , Ratones , Ratones Endogámicos , Datos de Secuencia Molecular , Pruebas de Neutralización , Conejos , Replicón/genética , Replicón/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA