Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Biol (Weinh) ; 8(6): e2300577, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38596830

RESUMEN

Metastasis is the principal factor in poor prognosis for individuals with osteosarcoma (OS). Understanding the events that lead to metastasis is critical to develop better interventions for this disease. Alveolar macrophages are potentially involved in priming the lung microenvironment for OS metastasis, yet the mechanisms involved in this process remain unclear. Since extracellular vesicles (EVs) are a known actor in primary tumor development, their potential role in OS metastagenesis through macrophage modulation is explored here. The interaction of EVs isolated from highly metastatic (K7M2) and less metastatic (K12) osteosarcoma cell lines is compared with a peritoneal macrophage cell line. An EV concentration that reproducibly induced macrophage migration is identified first, then used for later experiments. By confocal microscopy, both EV types associated with M0 or M1 macrophages; however, only K7M2-EVs are associated with M2 macrophages, an interaction that is abrogated by EV pre-treatment with anti-CD47 antibody. Interestingly, all interactions appeared to be surface binding, not internalized. In functional studies, K7M2-EVs polarized fewer macrophages to M1. Together, these data suggest that K7M2-EVs have unique interactions with macrophages that can contribute to the production of a higher proportion of pro-tumor type macrophages, thereby accelerating metastasis.


Asunto(s)
Neoplasias Óseas , Vesículas Extracelulares , Macrófagos , Osteosarcoma , Osteosarcoma/patología , Osteosarcoma/metabolismo , Osteosarcoma/secundario , Vesículas Extracelulares/metabolismo , Humanos , Línea Celular Tumoral , Macrófagos/inmunología , Macrófagos/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Fenotipo , Animales , Microambiente Tumoral , Metástasis de la Neoplasia , Ratones , Movimiento Celular
2.
APL Bioeng ; 8(1): 016116, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38435468

RESUMEN

Mesenchymal stromal cells (MSCs) are widely used in cell-based therapies and tissue regeneration for their potent secretome, which promotes host cell recruitment and modulates inflammation. Compared to monodisperse cells, MSC spheroids exhibit improved viability and increased secretion of immunomodulatory cytokines. While mechanical stimulation of monodisperse cells can increase cytokine production, the influence of mechanical loading on MSC spheroids is unknown. Here, we evaluated the effect of controlled, uniaxial cyclic compression on the secretion of immunomodulatory cytokines by human MSC spheroids and tested the influence of load-induced gene expression on MSC mechanoresponsiveness. We exposed MSC spheroids, entrapped in alginate hydrogels, to three cyclic compressive regimes with varying stress (L) magnitudes (i.e., 5 and 10 kPa) and hold (H) durations (i.e., 30 and 250 s) L5H30, L10H30, and L10H250. We observed changes in cytokine and chemokine expression dependent on the loading regime, where higher stress regimes tended to result in more exaggerated changes. However, only MSC spheroids exposed to L10H30 induced human THP-1 macrophage polarization toward an M2 phenotype compared to static conditions. Static and L10H30 loading facilitated a strong, interlinked F-actin arrangement, while L5H30 and L10H250 disrupted the structure of actin filaments. This was further examined when the actin cytoskeleton was disrupted via Y-27632. We observed downregulation of YAP-related genes, and the levels of secreted inflammatory cytokines were globally decreased. These findings emphasize the essential role of mechanosignaling in mediating the immunomodulatory potential of MSC spheroids.

3.
Adv Healthc Mater ; : e2302500, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38069833

RESUMEN

Conductive biomaterials may capture native or exogenous bioelectric signaling, but incorporation of conductive moieties is limited by cytotoxicity, poor injectability, or insufficient stimulation. Microgel annealed scaffolds are promising as hydrogel-based materials due to their inherent void space that facilitates cell migration and proliferation better than nanoporous bulk hydrogels. Conductive microgels are generated from poly(ethylene) glycol (PEG and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) to explore the interplay of void volume and conductivity on myogenic differentiation. PEDOT: PSS increases microgel conductivity two-fold while maintaining stiffness, annealing strength, and viability of associated myoblastic cells. C2C12 myoblasts exhibit increases in the late-stage differentiation marker myosin heavy chain as a function of both porosity and conductivity. Myogenin, an earlier marker, is influenced only by porosity. Human skeletal muscle-derived cells exhibit increased Myod1, insulin like growth factor-1, and insulin-like growth factor binding protein 2 at earlier time points on conductive microgel scaffolds compared to non-conductive scaffolds. They also secrete more vascular endothelial growth factor at early time points and express factors that led to macrophage polarization patterns observe during muscle repair. These data indicate that conductivity aids myogenic differentiation of myogenic cell lines and primary cells, motivating the need for future translational studies to promote muscle repair.

4.
Proc Natl Acad Sci U S A ; 120(39): e2302101120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37729195

RESUMEN

Osteosarcoma (OS) is the most common primary malignant bone cancer in children and adolescents. While numerous other cancers now have promising therapeutic advances, treatment options for OS have remained unchanged since the advent of standard chemotherapeutics and offer less than a 25% 5-y survival rate for those with metastatic disease. This dearth of clinical progress underscores a lack of understanding of OS progression and necessitates the study of this disease in an innovative system. Here, we adapt a previously described engineered bone marrow (eBM) construct for use as a three-dimensional platform to study how microenvironmental and immune factors affect OS tumor progression. We form eBM by implanting acellular bone-forming materials in mice and explanting the cellularized constructs after 8 wk for study. We interrogate the influence of the anatomical implantation site on eBM tissue quality, test ex vivo stability under normoxic (5% O2) and standard (21% O2) culture conditions, culture OS cells within these constructs, and compare them to human OS samples. We show that eBM stably recapitulates the composition of native bone marrow. OS cells exhibit differential behavior dependent on metastatic potential when cultured in eBM, thus mimicking in vivo conditions. Furthermore, we highlight the clinical applicability of eBM as a drug-screening platform through doxorubicin treatment and show that eBM confers a protective effect on OS cells that parallel clinical responses. Combined, this work presents eBM as a cellular construct that mimics the complex bone marrow environment that is useful for mechanistic bone cancer research and drug screening.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Adolescente , Niño , Humanos , Animales , Ratones , Detección Precoz del Cáncer , Médula Ósea , Evaluación Preclínica de Medicamentos , Neoplasias Óseas/tratamiento farmacológico
5.
bioRxiv ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37577583

RESUMEN

Bioelectricity is an understudied phenomenon to guide tissue homeostasis and regeneration. Conductive biomaterials may capture native or exogenous bioelectric signaling, but incorporation of conductive moieties is limited by cytotoxicity, poor injectability, or insufficient stimulation. Microgel annealed scaffolds are promising as hydrogel-based materials due to their inherent void space that facilitates cell migration and proliferation better than nanoporous bulk hydrogels. We generated conductive microgels from poly(ethylene) glycol and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) to explore the interplay of void volume and conductivity on myogenic differentiation. PEDOT:PSS increased microgel conductivity over 2-fold while maintaining stiffness, annealing strength, and viability of associated myoblastic cells. C2C12 myoblasts exhibited increases in the late-stage differentiation marker myosin heavy chain as a function of both porosity and conductivity. Myogenin, an earlier marker, was influenced only by porosity. Human skeletal muscle derived cells exhibited increased Myod1 , IGF-1, and IGFBP-2 at earlier timepoints on conductive microgel scaffolds compared to non-conductive scaffolds. They also secreted higher levels of VEGF at early timepoints and expressed factors that led to macrophage polarization patterns observed during muscle repair. These data indicate that conductivity aids myogenic differentiation of myogenic cell lines and primary cells, motivating the need for future translational studies to promote muscle repair.

6.
Adv Healthc Mater ; 12(13): e2202239, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36719946

RESUMEN

Microgels are an emerging platform for in vitro models and guiding cell fate due to their inherent porosity and tunability. This work describes a light-based technique for rapidly annealing microgels across a range of diameters. Utilizing 8-arm poly(ethylene) glycol-vinyl sulfone, the number of arms available for crosslinking, functionalization, and annealing is stoichiometrically controlled. Small and large microgels are fabricated to explore how microgel diameter impacts void space and the role of porosity on cell spreading, cell aggregation, and macrophage polarization. Mesenchymal stromal cells spread rapidly in both formulations, yet the smaller microgels permit a higher cell density. When seeded with macrophages, the smaller microgels promote an M1 phenotype, while larger microgels promote an M2 phenotype. As another application, the inherent porosity of annealed microgels is leveraged to induce cell aggregation. Finally, the microgels are implanted to examine how different size microgels influence endogenous cell invasion and macrophage polarization. The use of ultraviolet light allows for microgels to be noninvasively injected into a desired mold or wound defect before annealing, and microgels of different properties combined to create a heterogeneous scaffold. This approach is clinically relevant given its tunability and fast annealing time.


Asunto(s)
Microgeles , Hidrogeles , Polietilenglicoles
7.
Acta Biomater ; 155: 271-281, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36328130

RESUMEN

The therapeutic efficacy of mesenchymal stromal cells (MSCs) for tissue regeneration is critically linked to the potency of the complex mixture of growth factors, cytokines, exosomes, and other biological cues that they secrete. The duration of cell-based approaches is limited by rapid loss of cells upon implantation, motivating the need to prolong cell viability and extend the therapeutic influence of the secretome. We and others demonstrated that the secretome is upregulated when MSCs are formed into spheroids. Although the efficacy of the MSC secretome has been characterized in the literature, no studies have reported the therapeutic benefit of in situ sequestration of the secretome within a wound site using engineered biomaterials. We previously demonstrated the capacity of sulfated alginate hydrogels to sequester components of the MSC secretome for prolonged presentation in vitro, yet the efficacy of this platform has not been evaluated in vivo. In this study, we used sulfated alginate hydrogels loaded with MSC spheroids to aid in the regeneration of a rat muscle crush injury. We hypothesized that the use of sulfated alginate to bind therapeutically relevant growth factors from the MSC spheroid secretome would enhance muscle regeneration by recruiting host cells into the tissue site. The combination of sulfated alginate and MSC spheroids resulted in decreased collagen deposition, improved myogenic marker expression, and increased neuromuscular junctions 2 weeks after injury. These data indicate that MSC spheroids delivered in sulfated alginate represent a promising approach for decreased fibrosis and increased functional regeneration of muscle. STATEMENT OF SIGNIFICANCE: The therapeutic efficacy of mesenchymal stromal cells (MSCs) for tissue regeneration is attributed to the complex diversity of the secretome. Cell-based approaches are limited by rapid cell death, motivating the need to extend the availability of the secretome. We previously demonstrated that sulfated alginate hydrogels sequester components of the MSC secretome for prolonged presentation in vitro, yet no studies have reported the in situ sequestration of the secretome. Herein, we transplanted MSC spheroids in sulfated alginate hydrogels to promote muscle regeneration. MSC spheroids in sulfated alginate decreased collagen deposition, improved myogenic marker expression, and increased neuromuscular junctions. These data indicate that MSC spheroids delivered in sulfated alginate represent a promising approach for decreasing fibrosis and increasing functional muscle regeneration.


Asunto(s)
Células Madre Mesenquimatosas , Esferoides Celulares , Ratas , Animales , Alginatos/farmacología , Sulfatos , Colágeno/metabolismo , Hidrogeles/farmacología , Hidrogeles/metabolismo , Músculos
8.
NPJ Regen Med ; 7(1): 70, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494368

RESUMEN

Cell therapies offer a tailorable, personalized treatment for use in tissue engineering to address defects arising from trauma, inefficient wound repair, or congenital malformation. However, most cell therapies have achieved limited success to date. Typically injected in solution as monodispersed cells, transplanted cells exhibit rapid cell death or insufficient retention at the site, thereby limiting their intended effects to only a few days. Spheroids, which are dense, three-dimensional (3D) aggregates of cells, enhance the beneficial effects of cell therapies by increasing and prolonging cell-cell and cell-matrix signaling. The use of spheroids is currently under investigation for many cell types. Among cells under evaluation, spheroids formed of mesenchymal stromal cells (MSCs) are particularly promising. MSC spheroids not only exhibit increased cell survival and retained differentiation, but they also secrete a potent secretome that promotes angiogenesis, reduces inflammation, and attracts endogenous host cells to promote tissue regeneration and repair. However, the clinical translation of spheroids has lagged behind promising preclinical outcomes due to hurdles in their formation, instruction, and use that have yet to be overcome. This review will describe the current state of preclinical spheroid research and highlight two key examples of spheroid use in clinically relevant disease modeling. It will highlight techniques used to instruct the phenotype and function of spheroids, describe current limitations to their use, and offer suggestions for the effective translation of cell spheroids for therapeutic treatments.

9.
Adv Healthc Mater ; 10(21): e2101048, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34486244

RESUMEN

Cell-based approaches to tissue repair suffer from rapid cell death upon implantation, limiting the window for therapeutic intervention. Despite robust lineage-specific differentiation potential in vitro, the function of transplanted mesenchymal stromal cells (MSCs) in vivo is largely attributed to their potent secretome comprising a variety of growth factors (GFs). Furthermore, GF secretion is markedly increased when MSCs are formed into spheroids. Native GFs are sequestered within the extracellular matrix (ECM) via sulfated glycosaminoglycans, increasing the potency of GF signaling compared to their unbound form. To address the critical need to prolong the efficacy of transplanted cells, alginate hydrogels are modified with sulfate groups to sequester endogenous heparin-binding GFs secreted by MSC spheroids. The influence of crosslinking method and alginate modification is assessed on mechanical properties, degradation rate, and degree of sulfate modification. Sulfated alginate hydrogels sequester a mixture of MSC-secreted endogenous biomolecules, thereby prolonging the therapeutic effect of MSC spheroids for tissue regeneration. GFs are sequestered for longer durations within sulfated hydrogels and retain their bioactivity to regulate endothelial cell tubulogenesis and myoblast infiltration. This platform has the potential to prolong the therapeutic benefit of the MSC secretome and serve as a valuable tool for investigating GF sequestration.


Asunto(s)
Hidrogeles , Células Madre Mesenquimatosas , Alginatos , Esferoides Celulares , Sulfatos
10.
J Biomech ; 115: 110189, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33385867

RESUMEN

Cancer is the second leading cause of death in the United States, claiming more than 560,000 lives each year. Osteosarcoma (OS) is the most common primary malignant tumor of bone in children and young adults, while bone is a common site of metastasis for tumors initiating from other tissues. The heterogeneity, continual evolution, and complexity of this disease at different stages of tumor progression drives a critical need for physiologically relevant models that capture the dynamic cancer microenvironment and advance chemotherapy techniques. Monolayer cultures have been favored for cell-based research for decades due to their simplicity and scalability. However, the nature of these models makes it impossible to fully describe the biomechanical and biochemical cues present in 3-dimensional (3D) microenvironments, such as ECM stiffness, degradability, surface topography, and adhesivity. Biomaterials have emerged as valuable tools to model the behavior of various cancers by creating highly tunable 3D systems for studying neoplasm behavior, screening chemotherapeutic drugs, and developing novel treatment delivery techniques. This review highlights the recent application of biomaterials toward the development of tumor models, details methods for their tunability, and discusses the clinical and therapeutic applications of these systems.


Asunto(s)
Neoplasias , Materiales Biocompatibles , Niño , Humanos , Ingeniería de Tejidos , Microambiente Tumoral
11.
Biomaterials ; 269: 120607, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33385687

RESUMEN

Mesenchymal stromal cells (MSCs) can promote tissue repair in regenerative medicine, and their therapeutic potential is further enhanced via spheroid formation. Stress relaxation of hydrogels has emerged as a potent stimulus to enhance MSC spreading and osteogenic differentiation, but the effect of hydrogel viscoelasticity on MSC spheroids has not been reported. Herein, we describe a materials-based approach to augment the osteogenic potential of entrapped MSC spheroids by leveraging the mechanical properties of alginate hydrogels. Compared to spheroids entrapped in covalently crosslinked elastic alginate, calcium deposition of MSC spheroids was consistently increased in ionically crosslinked, viscoelastic hydrogels. We previously demonstrated that intraspheroidal presentation of Bone Morphogenetic Protein-2 (BMP-2) on hydroxyapatite (HA) nanoparticles resulted in more spatially uniform MSC osteodifferentiation, providing a method to internally influence spheroid phenotype. In these studies, we observed significant increases in calcium deposition by MSC spheroids loaded with BMP-2-HA in viscoelastic gels compared to soluble BMP-2, which was greater than spheroids entrapped in all elastic alginate gels. Upon implantation in critically sized calvarial bone defects, bone formation was greater in all animals treated with viscoelastic hydrogels. Increases in bone formation were evident in viscoelastic gels, regardless of the mode of presentation of BMP-2 (i.e., soluble delivery or HA nanoparticles). These studies demonstrate that the dynamic mechanical properties of viscoelastic alginate are an effective strategy to enhance the therapeutic potential of MSC spheroids for bone formation and repair.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Diferenciación Celular , Hidrogeles , Esferoides Celulares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA