RESUMEN
INTRODUCTION: Seasonal malaria chemoprevention (SMC) involves repeated administrations of sulfadoxine-pyrimethamine plus amodiaquine to children below the age of 5 years during the peak transmission season in areas of seasonal malaria transmission. While highly impactful in reducing Plasmodium falciparum malaria burden in controlled research settings, the impact of SMC on infection prevalence is moderate in real-life settings. It remains unclear what drives this efficacy decay. Recently, the WHO widened the scope for SMC to target all vulnerable populations. The Ministry of Health (MoH) in Burkina Faso is considering extending SMC to children below 10 years old. We aim to assess the impact of SMC on clinical incidence and parasite prevalence and quantify the human infectious reservoir for malaria in this population. METHODS AND ANALYSIS: We will perform a cluster randomised trial in Saponé Health District, Burkina Faso, with three study arms comprising 62 clusters of three compounds: arm 1 (control): SMC in under 5-year-old children, implemented by the MoH without directly observed treatment (DOT) for the full course of SMC; arm 2 (intervention): SMC in under 5-year-old children, with DOT for the full course of SMC; arm 3 (intervention): SMC in under 10-year-old children, with DOT for the full course of SMC. The primary endpoint is parasite prevalence at the end of the malaria transmission season. Secondary endpoints include the impact of SMC on clinical incidence. Factors affecting SMC uptake, treatment adherence, drug concentrations, parasite resistance markers and transmission of parasites will be determined. ETHICS AND DISSEMINATION: The London School of Hygiene & Tropical Medicine's Ethics Committee (29193) and the Burkina Faso National Medical Ethics Committee (Deliberation No 2023-05-104) approved this study. The findings will be presented to the community; disease occurrence data and study outcomes will also be shared with the Burkina Faso MoH. Findings will be published irrespective of their results. TRIAL REGISTRATION NUMBER: NCT05878366.
Asunto(s)
Antimaláricos , Malaria , Preescolar , Humanos , Lactante , Antimaláricos/uso terapéutico , Burkina Faso/epidemiología , Quimioprevención/métodos , Combinación de Medicamentos , Malaria/epidemiología , Malaria/prevención & control , Malaria/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto , Estaciones del Año , NiñoRESUMEN
Despite progress towards malaria reduction in Peru, measuring exposure in low transmission areas is crucial for achieving elimination. This study focuses on two very low transmission areas in Loreto (Peruvian Amazon) and aims to determine the relationship between malaria exposure and proximity to health facilities. Individual data was collected from 38 villages in Indiana and Belen, including geo-referenced households and blood samples for microscopy, PCR and serological analysis. A segmented linear regression model identified significant changes in seropositivity trends among different age groups. Local Getis-Ord Gi* statistic revealed clusters of households with high (hotspots) or low (coldspots) seropositivity rates. Findings from 4000 individuals showed a seropositivity level of 2.5% (95%CI: 2.0%-3.0%) for P. falciparum and 7.8% (95%CI: 7.0%-8.7%) for P. vivax, indicating recent or historical exposure. The segmented regression showed exposure reductions in the 40-50 age group (ß1 = 0.043, p = 0.003) for P. vivax and the 50-60 age group (ß1 = 0.005, p = 0.010) for P. falciparum. Long and extreme distance villages from Regional Hospital of Loreto exhibited higher malaria exposure compared to proximate and medium distance villages (p < 0.001). This study showed the seropositivity of malaria in two very low transmission areas and confirmed the spatial pattern of hotspots as villages become more distant.
Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Humanos , Perú/epidemiología , Plasmodium falciparum , Plasmodium vivax , Estudios Seroepidemiológicos , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiologíaRESUMEN
Malaysia has reported no indigenous cases of P. falciparum and P. vivax for over 3 years. When transmission reaches such low levels, it is important to understand the individuals and locations where exposure risks are high, as they may be at greater risk in the case of a resurgence of transmission. Serology is a useful tool in low transmission settings, providing insight into exposure over longer durations than PCR or RDT. We ran blood samples from a 2015 population-based survey in northern Sabah, Malaysian Borneo on a multiplex bead assay. Using supervised machine learning methods, we characterised recent and historic exposure to Plasmodium falciparum and P. vivax and found recent exposure to P. falciparum to be very low, with exposure to both species increasing with age. We performed a risk-factor assessment on environmental, behavioural, demographic and household factors, and identified forest activity and longer travel times to healthcare as common risk-factors for exposure to P. falciparum and P. vivax. In addition, we used remote-sensing derived data and geostatistical models to assess environmental and spatial associations with exposure. We created predictive maps of exposure to recent P. falciparum in the study area and showed 3 clear foci of exposure. This study provides useful insight into the environmental, spatial and demographic risk factors for P. falciparum and P. vivax at a period of low transmission in Malaysian Borneo. The findings would be valuable in the case of resurgence of human malarias in the region.
Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Humanos , Borneo , Plasmodium vivax , Malaria/epidemiología , Malaria Vivax/epidemiología , Malaria Falciparum/epidemiología , Factores de Riesgo , Plasmodium falciparumRESUMEN
Malaria transmission depends on the presence of Plasmodium gametocytes that are the only parasite life stage that can infect mosquitoes. Gametocyte production varies between infections and over the course of infections. Infection duration is highly important for gametocyte production but poorly quantified. Between 2017 and 2019 an all-age cohort of individuals from Tororo, eastern Uganda was followed by continuous passive and routine assessments. We longitudinally monitored 104 incident infections from 98 individuals who were sampled once every 28 days and on any day of symptoms. Among infections that lasted ≥ 3 months, gametocyte appearance was near-universal with 96% of infections having detectable gametocytes prior to clearance. However, most infections were of much shorter duration; 55.7% of asymptomatic infections were detected only once. When considering all asymptomatic infections, regardless of their duration, only 36.3% had detectable gametocytes on at least one time-point prior to parasite clearance. Infections in individuals with sickle-cell trait (HbAS) were more likely to have gametocytes detected (Hazard Rate (HR) = 2.68, 95% CI 1.12, 6.38; p = 0.0231) and had gametocytes detected at higher densities (Density Ratio (DR) = 9.19, 95% CI 2.79, 30.23; p = 0.0002) compared to infections in wildtype (HbAA) individuals. Our findings suggest that a large proportion of incident infections is too short in duration and of too low density to contribute to onward transmission.
Asunto(s)
Culicidae , Malaria Falciparum , Animales , Humanos , Plasmodium falciparum , Malaria Falciparum/parasitología , Infecciones Asintomáticas , UgandaRESUMEN
BACKGROUND: In areas where Plasmodium falciparum malaria is seasonal, a dry season reservoir of blood-stage infection is essential for initiating transmission during the following wet season. METHODS: In The Gambia, a cohort of 42 individuals with quantitative polymerase chain reaction-positive P falciparum infections at the end of the transmission season (December) were followed monthly until the end of the dry season (May) to evaluate infection persistence. The influence of human host and parasitological factors was investigated. RESULTS: A large proportion of individuals infected at the end of the wet season had detectable infections until the end of the dry season (40.0%; 16 of 40). At the start of the dry season, the majority of these persistent infections (82%) had parasite densities >10 p/µL compared to only 5.9% of short-lived infections. Persistent infections (59%) were also more likely to be multiclonal than short-lived infections (5.9%) and were associated with individuals having higher levels of P falciparum-specific antibodies (Pâ =â .02). CONCLUSIONS: Asymptomatic persistent infections were multiclonal with higher parasite densities at the beginning of the dry season. Screening and treating asymptomatic infections during the dry season may reduce the human reservoir of malaria responsible for initiating transmission in the wet season.
Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Infecciones Asintomáticas , Estudios de Cohortes , Gambia/epidemiología , Humanos , Prevalencia , Estaciones del AñoRESUMEN
OBJECTIVE: This study provides 2016 data on the prevalence of key single nucleotide polymorphisms (SNPs) associated with antimalarial drug resistance in Palawan, Philippines. Findings were combined with historical data to model temporal changes in the prevalence of these SNPs in Plasmodium isolates. METHODS: Plasmodium isolates were genotyped using drug resistance markers pfmdr1, pfcrt, pfdhfr, pfdhps, kelch-13, pvmdr1, pvdhfr, and pvdhps. Temporal trends in the probability of mutations were estimated as a function of time using a binomial generalised linear model. RESULTS: All samples sequenced for Plasmodium falciparum chloroquine markers pfmdr1 and pfcrt had wild-type alleles. Varying mutation patterns were observed for the sulphadoxine/pyrimethamine markers pfdhps and pfdhfr; complete quintuplet mutations were not found. No SNPs were observed for the artemisinin marker kelch-13. For Plasmodium vivax, differing patterns were detected for pvmdr1, pvdhfr, and pvdhps. CONCLUSIONS: The study findings suggest that the current drugs remain effective and that there is limited importation and establishment of resistant parasites in the area. Clear temporal trends were recognised, with prominent decreases in the proportions of pfcrt and pfmdr mutations detected within the past 15 years, consistent with a change in antimalarial drug policy. Continuous surveillance of antimalarial drug resistance is important to support malaria elimination efforts.
Asunto(s)
Antimaláricos , Malaria Falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Combinación de Medicamentos , Resistencia a Medicamentos/genética , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Mutación , Filipinas/epidemiología , Plasmodium falciparum , Plasmodium vivax/genética , Prevalencia , Proteínas Protozoarias/genéticaRESUMEN
We evaluated the detectability of Plasmodium falciparum clones when assessed on 3 consecutive days in incident and chronic infections in naturally exposed children living in an area of intense malaria transmission in Burkina Faso. The median number of clones by merozoite surface protein 2 (MSP2) genotyping was 3 (interquartile range [IQR] 2-5) in incident infections compared with 6 (IQR 4-8) in chronic infections (P < 0.0001). When all clones detected on days 1-3 were considered as true complexity of infection, sampling on day 1 detected only 69.4% (109/157) or 68.3% (228/334) of all clones in incident and chronic infections, respectively. Our findings demonstrate that a large proportion of clones are missed by single time-point sampling. In addition, because of the high complexity of infection early in incident infections, our data suggest many infections may be caused by genetically complex inocula.
Asunto(s)
Malaria Falciparum/diagnóstico , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Antígenos de Protozoos/genética , Burkina Faso/epidemiología , Niño , Preescolar , Enfermedad Crónica/epidemiología , Enfermedad Crónica/prevención & control , Estudios de Cohortes , Variación Genética , Genotipo , Humanos , Malaria Falciparum/epidemiología , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Plasmodium falciparum/aislamiento & purificación , Proteínas Protozoarias/genética , MuestreoRESUMEN
BACKGROUND: The Solomon Islands has made significant progress in the control of malaria through vector control, access and use of improved diagnostics and therapeutic drugs. As transmission is reduced there is a need to understand variations in transmission risk at the provincial and village levels to stratify control methods. METHODS: A cross-sectional survey of malaria in humans was conducted in the Solomon Islands during April 2018. Nineteen villages across 4 provinces were included. The presence of Plasmodium species parasites in blood samples was detected using PCR. RESULTS: Blood samples were analysed from 1,914 participants. The prevalence of DNA of Plasmodium falciparum was 1.2 % (n = 23) and for Plasmodium vivax was 1.5 % (n = 28). 22 % (n = 5/23) of P. falciparum DNA positive participants were febrile and 17 % of P. vivax DNA positive participants (n = 5/28). The prevalence of both P. falciparum and P. vivax was extremely spatially heterogeneous. For P. falciparum, in particular, only 2 small foci of transmission were identified among 19 villages. Plasmodium falciparum infections were uniformly distributed across age groups. Insecticide-treated bed net use the night prior to the survey was reported by 63 % of participants and significantly differed by province. CONCLUSIONS: Malaria transmission across the Solomon Islands has become increasingly fragmented, affecting fewer villages and provinces. The majority of infections were afebrile suggesting the need for strong active case detection with radical cure with primaquine for P. vivax. Village-level stratification of targeted interventions based on passive and active case detection data could support the progress towards a more cost-effective and successful elimination programme.
Asunto(s)
Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/aislamiento & purificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Estudios Transversales , ADN Protozoario/análisis , Femenino , Humanos , Incidencia , Malaria Falciparum/parasitología , Malaria Vivax/parasitología , Masculino , Melanesia/epidemiología , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Prevalencia , Adulto JovenRESUMEN
Primaquine (PQ) is an antimalarial drug with the potential to reduce malaria transmission due to its capacity to clear mature Plasmodium falciparum gametocytes in the human host. However, the large-scale roll-out of PQ has to be counterbalanced by the additional risk of drug-induced hemolysis in individuals suffering from Glucose-6-phospate dehydrogenase (G6PD) deficiency, a genetic condition determined by polymorphisms on the X-linked G6PD gene. Most studies on G6PD deficiency and PQ-associated hemolysis focused on the G6PD A- variant, a combination of the two single nucleotide changes G202A (rs1050828) and A376G (rs1050829), although other polymorphisms may play a role. In this study, we tested the association of 20 G6PD single nucleotide polymorphisms (SNPs) with hemolysis measured seven days after low single dose of PQ given at the dose of 0.1 mg/kg to 0.75 mg/kg in 957 individuals from 6 previously published clinical trials investigating the safety and efficacy of this drug spanning five African countries. After adjusting for inter-study effects, age, gender, baseline hemoglobin level, PQ dose, and parasitemia at screening, our analysis showed putative association signals from the common G6PD mutation, A376G [-log10(p-value) = 2.44] and two less-known SNPs, rs2230037 [-log10(p-value] = 2.60), and rs28470352 [-log10(p-value) = 2.15]; A376G and rs2230037 were in very strong linkage disequilibrium with each other (R 2 = 0.978). However, when the effects of these SNPs were included in the same regression model, the subsequent associations were in the borderline of statistical significance. In conclusion, whilst a role for the A- variant is well established, we did not observe an important additional role for other G6PD polymorphisms in determining post-treatment hemolysis in individuals treated with low single-dose PQ.
RESUMEN
Plasmodium falciparum gametocyte kinetics and infectivity may differ between chronic and incident infections. In the current study, we assess parasite kinetics and infectivity to mosquitoes among children (aged 5-10 years) from Burkina Faso with (a) incident infections following parasite clearance (n = 48) and (b) chronic asymptomatic infections (n = 60). In the incident infection cohort, 92% (44/48) of children develop symptoms within 35 days, compared to 23% (14/60) in the chronic cohort. All individuals with chronic infection carried gametocytes or developed them during follow-up, whereas only 35% (17/48) in the incident cohort produce gametocytes before becoming symptomatic and receiving treatment. Parasite multiplication rate (PMR) and the relative abundance of ap2-g and gexp-5 transcripts are positively associated with gametocyte production. Antibody responses are higher and PMR lower in chronic infections. The presence of symptoms and sexual stage immune responses are associated with reductions in gametocyte infectivity to mosquitoes. We observe that most incident infections require treatment before the density of mature gametocytes is sufficient to infect mosquitoes. In contrast, chronic, asymptomatic infections represent a significant source of mosquito infections. Our observations support the notion that malaria transmission reduction may be expedited by enhanced case management, involving both symptom-screening and infection detection.
Asunto(s)
Anopheles/crecimiento & desarrollo , Insectos Vectores/crecimiento & desarrollo , Malaria Falciparum/transmisión , Plasmodium falciparum/crecimiento & desarrollo , Animales , Anopheles/parasitología , Burkina Faso/epidemiología , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Incidencia , Insectos Vectores/parasitología , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Masculino , Plasmodium falciparum/fisiología , Densidad de Población , Factores de TiempoRESUMEN
Distribution of long-lasting insecticide-treated nets (LLINs), passive detection and treatment with artemisinin-based combination therapy (ACT), and intermittent preventive treatment in pregnancy (IPTp) are the mainstay malaria control measures of Guinea-Bissau's national control programme. This study aimed to estimate the prevalence of Plasmodium falciparum on Bubaque, the most populous island of the country's remote Bijagos archipelago. A cross-sectional survey was performed at the start of the rainy season in August 2017. Participants were recruited using systematic random sampling in a two-stage stratified cluster design. Malaria parasitemia was detected using rapid diagnostic tests (RDTs) and quantitative PCR (qPCR). Data on housing, education, larval source management, socioeconomic status, anemia, and malaria preventive measures were collected. Multivariable logistic regression models were constructed to identify associations with P. falciparum infection. Four hundred four persons (aged 6 months-79 years, median 17 years) were enrolled in the study. The prevalence of P. falciparum parasitemia was 5.8% by RDT (95% CI: 3.55-9.33) and 16.9% by qPCR (95% CI: 13.09-21.71). The prevalence of anemia was 74.3% (95% CI: 69.04-78.85) as defined by the WHO criteria. All sampled houses were found to have open eaves; 99.5% of the surveyed population reported sleeping under a bednet (95% CI: 97.8-99.9). Although reported LLIN use is high, there remains an appreciable prevalence of malaria, suggesting that transmission is ongoing and further tools are required to reduce the burden of the disease.
Asunto(s)
Malaria Falciparum/epidemiología , Control de Mosquitos/métodos , Parasitemia/epidemiología , Adolescente , Adulto , Anciano , Anemia/epidemiología , Anemia/parasitología , Niño , Preescolar , Estudios Transversales , Femenino , Guinea Bissau/epidemiología , Humanos , Lactante , Mosquiteros Tratados con Insecticida/provisión & distribución , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Plasmodium falciparum/genética , Población , Prevalencia , Adulto JovenRESUMEN
BACKGROUND: Cholera remains a major global health challenge. Uvira, in the Democratic Republic of the Congo (DRC), has had endemic cholera since the 1970's and has been implicated as a possible point of origin for national outbreaks. A previous study among this population, reported a case confirmation rate of 40% by rapid diagnostic test (RDT) among patients at the Uvira Cholera Treatment Centre (CTC). This study considers the prevalence and diversity of 15 enteric pathogens in suspected cholera cases seeking treatment at the Uvira CTC. METHODS: We used the Luminex xTAG® multiplex PCR to test for 15 enteric pathogens, including toxigenic strains of V. cholerae in rectal swabs preserved on Whatman FTA Elute cards. Results were interpreted on MAGPIX® and analyzed on the xTAG® Data Analysis Software. Prevalence of enteric pathogens were calculated and pathogen diversity was modelled with a Poisson regression. RESULTS: Among 269 enrolled CTC patients, PCR detected the presence of toxigenic Vibrio cholerae in 38% (103/269) of the patients, which were considered to be cholera cases. These strains were detected as the sole pathogen in 36% (37/103) of these cases. Almost half (45%) of all study participants carried multiple enteric pathogens (two or more). Enterotoxigenic Escherichia coli (36%) and Cryptosporidium (28%) were the other most common pathogens identified amongst all participants. No pathogen was detected in 16.4% of study participants. Mean number of pathogens was highest amongst boys and girls aged 1-15 years and lowest in women aged 16-81 years. Ninety-three percent of toxigenic V. cholerae strains detected by PCR were found in patients having tested positive for V. cholerae O1 by RDT. CONCLUSIONS: Our study supports previous results from DRC and other cholera endemic areas in sub-Sahara Africa with less than half of CTC admissions positive for cholera by PCR. More research is required to determine the causes of severe acute diarrhea in these low-resource, endemic areas to optimize treatment measures. TRIAL REGISTRATION: This study is part of the impact evaluation study entitled: "Impact Evaluation of Urban Water Supply Improvements on Cholera and Other Diarrheal Diseases in Uvira, Democratic Republic of Congo" registered on 10 October 2016 at clinicaltrials.gov Identification number: NCT02928341 .
Asunto(s)
Cólera/epidemiología , Criptosporidiosis/epidemiología , Cryptosporidium/genética , Diarrea/epidemiología , Brotes de Enfermedades , Escherichia coli Enterotoxigénica/genética , Infecciones por Escherichia coli/epidemiología , Vibrio cholerae/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Niño , Preescolar , Cólera/microbiología , Criptosporidiosis/parasitología , República Democrática del Congo/epidemiología , Pruebas Diagnósticas de Rutina , Diarrea/microbiología , Enfermedades Endémicas , Infecciones por Escherichia coli/microbiología , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa Multiplex , Prevalencia , Microbiología del Agua , Adulto JovenRESUMEN
Rapid diagnostic tests (RDTs) play a critical role in malaria diagnosis and control. The emergence of Plasmodium falciparum parasites that can evade detection by RDTs threatens control and elimination efforts. These parasites lack or have altered genes encoding histidine-rich proteins (HRPs) 2 and 3, the antigens recognized by HRP2-based RDTs. Surveillance of such parasites is dependent on identifying false-negative RDT results among suspected malaria cases, a task made more challenging during the current pandemic because of the overlap of symptoms between malaria and COVID-19, particularly in areas of low malaria transmission. Here, we share our perspective on the emergence of P. falciparum parasites lacking HRP2 and HRP3, and the surveillance needed to identify them amid the COVID-19 pandemic.
Asunto(s)
Infecciones por Coronavirus/epidemiología , Pruebas Diagnósticas de Rutina/métodos , Malaria Falciparum/diagnóstico , Plasmodium falciparum/aislamiento & purificación , Neumonía Viral/epidemiología , África , Antígenos de Protozoos/análisis , Betacoronavirus , COVID-19 , Humanos , Malaria Falciparum/epidemiología , Pandemias , Proteínas Protozoarias/análisis , SARS-CoV-2RESUMEN
BACKGROUND: Many health facilities in malaria endemic countries are dependent on Rapid diagnostic tests (RDTs) for diagnosis and some National Health Service (NHS) hospitals without expert microscopists rely on them for diagnosis out of hours. The emergence of P. falciparum lacking the gene encoding histidine-rich protein 2 and 3 (HRP2 and HRP3) and escaping RDT detection threatens progress in malaria control and elimination. Currently, confirmation of RDT negative due to the deletion of pfhrp2 and pfhrp3, which encodes a cross-reactive protein isoform, requires a series of PCR assays. These tests have different limits of detection and many laboratories have reported difficulty in confirming the absence of the deletions with certainty. METHODS: We developed and validated a novel and rapid multiplex real time quantitative (qPCR) assay to detect pfhrp2, pfhrp3, confirmatory parasite and human reference genes simultaneously. We also applied the assay to detect pfhrp2 and pfhrp3 deletion in 462 field samples from different endemic countries and UK travellers. RESULTS: The qPCR assay demonstrated diagnostic sensitivity of 100% (n = 19, 95% CI= (82.3%; 100%)) and diagnostic specificity of 100% (n = 31; 95% CI= (88.8%; 100%)) in detecting pfhrp2 and pfhrp3 deletions. In addition, the assay estimates P. falciparum parasite density and accurately detects pfhrp2 and pfhrp3 deletions masked in polyclonal infections. We report pfhrp2 and pfhrp3 deletions in parasite isolates from Kenya, Tanzania and in UK travellers. INTERPRETATION: The new qPCR is easily scalable to routine surveillance studies in countries where P. falciparum parasites lacking pfhrp2 and pfhrp3 are a threat to malaria control.
Asunto(s)
Antígenos de Protozoos/genética , ADN Protozoario/genética , Eliminación de Gen , Malaria Falciparum/diagnóstico , Reacción en Cadena de la Polimerasa Multiplex/métodos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Pruebas Diagnósticas de Rutina , Expresión Génica , Humanos , Kenia/epidemiología , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Reacción en Cadena de la Polimerasa Multiplex/normas , Plasmodium falciparum/patogenicidad , Tanzanía/epidemiología , Viaje , Reino Unido/epidemiologíaRESUMEN
BACKGROUND: Passively collected malaria case data are the foundation for public health decision making. However, because of population-level immunity, infections might not always be sufficiently symptomatic to prompt individuals to seek care. Understanding the proportion of all Plasmodium spp infections expected to be detected by the health system becomes particularly paramount in elimination settings. The aim of this study was to determine the association between the proportion of infections detected and transmission intensity for Plasmodium falciparum and Plasmodium vivax in several global endemic settings. METHODS: The proportion of infections detected in routine malaria data, P(Detect), was derived from paired household cross-sectional survey and routinely collected malaria data within health facilities. P(Detect) was estimated using a Bayesian model in 431 clusters spanning the Americas, Africa, and Asia. The association between P(Detect) and malaria prevalence was assessed using log-linear regression models. Changes in P(Detect) over time were evaluated using data from 13 timepoints over 2 years from The Gambia. FINDINGS: The median estimated P(Detect) across all clusters was 12·5% (IQR 5·3-25·0) for P falciparum and 10·1% (5·0-18·3) for P vivax and decreased as the estimated log-PCR community prevalence increased (adjusted odds ratio [OR] for P falciparum 0·63, 95% CI 0·57-0·69; adjusted OR for P vivax 0·52, 0·47-0·57). Factors associated with increasing P(Detect) included smaller catchment population size, high transmission season, improved care-seeking behaviour by infected individuals, and recent increases (within the previous year) in transmission intensity. INTERPRETATION: The proportion of all infections detected within health systems increases once transmission intensity is sufficiently low. The likely explanation for P falciparum is that reduced exposure to infection leads to lower levels of protective immunity in the population, increasing the likelihood that infected individuals will become symptomatic and seek care. These factors might also be true for P vivax but a better understanding of the transmission biology is needed to attribute likely reasons for the observed trend. In low transmission and pre-elimination settings, enhancing access to care and improvements in care-seeking behaviour of infected individuals will lead to an increased proportion of infections detected in the community and might contribute to accelerating the interruption of transmission. FUNDING: Wellcome Trust.
Asunto(s)
Infecciones Asintomáticas/epidemiología , Reservorios de Enfermedades/estadística & datos numéricos , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Adolescente , Adulto , África/epidemiología , Anciano , Anciano de 80 o más Años , Américas/epidemiología , Asia/epidemiología , Teorema de Bayes , Niño , Preescolar , Análisis por Conglomerados , Estudios Transversales , Reservorios de Enfermedades/parasitología , Femenino , Instituciones de Salud/estadística & datos numéricos , Humanos , Lactante , Estudios Longitudinales , Malaria Falciparum/transmisión , Malaria Vivax/transmisión , Masculino , Persona de Mediana Edad , Prevalencia , Vigilancia en Salud Pública/métodos , Estaciones del Año , Adulto JovenRESUMEN
BACKGROUND: Sulfadoxine-pyrimethamine (SP) is a cornerstone of malaria chemoprophylaxis and is considered for programmes in the Democratic Republic of Congo (DRC). However, SP efficacy is threatened by drug resistance, that is conferred by mutations in the dhfr and dhps genes. The World Health Organization has specified that intermittent preventive treatment for infants (IPTi) with SP should be implemented only if the prevalence of the dhps K540E mutation is under 50%. There are limited current data on the prevalence of resistance-conferring mutations available from Eastern DRC. The current study aimed to address this knowledge gap. METHODS: Dried blood-spot samples were collected from clinically suspected malaria patients [outpatient department (OPD)] and pregnant women attending antenatal care (ANC) in four sites in North and South Kivu, DRC. Quantitative PCR (qPCR) was performed on samples from individuals with positive and with negative rapid diagnostic test (RDT) results. Dhps K450E and A581G and dhfr I164L were assessed by nested PCR followed by allele-specific primer extension and detection by multiplex bead-based assays. RESULTS: Across populations, Plasmodium falciparum parasite prevalence was 47.9% (1160/2421) by RDT and 71.7 (1763/2421) by qPCR. Median parasite density measured by qPCR in RDT-negative qPCR-positive samples was very low with a median of 2.3 parasites/µL (IQR 0.5-25.2). Resistance genotyping was successfully performed in RDT-positive samples and RDT-negative/qPCR-positive samples with success rates of 86.2% (937/1086) and 55.5% (361/651), respectively. The presence of dhps K540E was high across sites (50.3-87.9%), with strong evidence for differences between sites (p < 0.001). Dhps A581G mutants were less prevalent (12.7-47.2%). The dhfr I164L mutation was found in one sample. CONCLUSIONS: The prevalence of the SP resistance marker dhps K540E exceeds 50% in all four study sites in North and South Kivu, DRC. K540E mutations regularly co-occurred with mutations in dhps A581G but not with the dhfr I164L mutation. The current results do not support implementation of IPTi with SP in the study area.
Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos , Malaria/prevención & control , Plasmodium/efectos de los fármacos , Pirimetamina/farmacología , Sulfadoxina/farmacología , Adolescente , Biomarcadores/sangre , Quimioprevención/estadística & datos numéricos , Niño , Preescolar , República Democrática del Congo , Combinación de Medicamentos , Femenino , Humanos , Lactante , Recién Nacido , MasculinoRESUMEN
To determine the presence and species composition of malaria infections, we screened a subset of samples collected during a cross-sectional survey in Northern Sabah, Malaysia using highly sensitive molecular techniques. Results identified 54 asymptomatic submicroscopic malaria infections, including a large cluster of Plasmodium falciparum and 3 P. knowlesi infections. We additionally identified 2 monoinfections with the zoonotic malaria Plasmodium cynomolgi, both in individuals reporting no history of forest activities or contact with macaques. Results highlight the need for improved surveillance strategies to detect these infections and determine public health impacts.
Asunto(s)
Erradicación de la Enfermedad , Malaria/epidemiología , Malaria/prevención & control , Plasmodium cynomolgi , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Niño , Preescolar , Estudios Transversales , Femenino , Geografía Médica , Humanos , Lactante , Malaria/parasitología , Malasia/epidemiología , Masculino , Persona de Mediana Edad , Plasmodium cynomolgi/clasificación , Vigilancia de la Población , Adulto Joven , ZoonosisRESUMEN
BACKGROUND: Land use changes disrupt ecosystems, altering the transmission of vector-borne diseases. These changes have been associated with increasing incidence of zoonotic malaria caused by Plasmodium knowlesi; however, the population-level distributions of infection and exposure remain unknown. We aimed to measure prevalence of serological exposure to P knowlesi and assess associated risk factors. METHODS: We did an environmentally stratified, population-based, cross-sectional survey across households in the Kudat, Kota Marudu, Pitas, and Ranau districts in northern Sabah, Malaysia, encompassing a range of ecologies. Using blood samples, the transmission intensity of P knowlesi and other malaria species was measured by specific antibody prevalence and infection detected using molecular methods. Proportions and configurations of land types were extracted from maps derived from satellite images; a data-mining approach was used to select variables. A Bayesian hierarchical model for P knowlesi seropositivity was developed, incorporating questionnaire data about individual and household-level risk factors with selected landscape factors. FINDINGS: Between Sept 17, 2015, and Dec 12, 2015, 10â100 individuals with a median age of 25 years (range 3 months to 105 years) were sampled from 2849 households in 180 villages. 5·1% (95% CI 4·8-5·4) were seropositive for P knowlesi, and marked historical decreases were observed in the transmission of Plasmodium falciparum and Plasmodium vivax. Nine Plasmodium spp infections were detected. Age, male sex, contact with macaques, forest use, and raised house construction were positively associated with P knowlesi exposure, whereas residing at higher geographical elevations and use of insecticide were protective. Agricultural and forest variables, such as proportions and fragmentation of land cover types, predicted exposure at different spatial scales from households. INTERPRETATION: Although few infections were detected, P knowlesi exposure was observed in all demographic groups and was associated with occupational factors. Results suggest that agricultural expansion and forest fragmentation affect P knowlesi exposure, supporting linkages between land use change and P knowlesi transmission. FUNDING: UK Medical Research Council, Natural Environment Research Council, Economic and Social Research Council, and Biotechnology and Biosciences Research Council.
Asunto(s)
Malaria/transmisión , Plasmodium knowlesi/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Infecciones Asintomáticas/epidemiología , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Lactante , Malaria/epidemiología , Malaria/parasitología , Malasia/epidemiología , Masculino , Persona de Mediana Edad , Prevalencia , Factores de Riesgo , Estudios Seroepidemiológicos , Adulto Joven , Zoonosis/epidemiología , Zoonosis/parasitología , Zoonosis/transmisiónRESUMEN
BACKGROUND: Glucose-6-phosphate dehydrogenase deficiency (G6PDd), haemoglobin C (HbC) and S (HbS) are inherited blood disorders (IBD) common in populations in malaria endemic areas. All are associated to some degree with protection against clinical malaria whilst additionally G6PDd is associated with haemolysis following treatment with 8-aminoquinolines. Measuring the prevalence of these inherited blood disorders in affected populations can improve understanding of disease epidemiology. Current methodologies in epidemiological studies commonly rely on individual target amplification and visualization; here a method is presented to simultaneously detect the polymorphisms and that can be expanded to include other single nucleotide polymorphisms (SNPs) of interest. METHODS: Human DNA from whole blood samples was amplified in a novel, multiplex PCR reaction and extended with SNP-specific probes in an allele specific primer extension (ASPE) to simultaneously detect four epidemiologically important human markers including G6PD SNPs (G202A and A376G) and common haemoglobin mutations (HbS and HbC). The products were hybridized to magnetic beads and the median fluorescence intensity (MFI) was read on MAGPIX® (Luminex corp.). Genotyping data was compared to phenotypical data generated by flow cytometry and to established genotyping methods. RESULTS: Seventy-five samples from Burkina Faso (n = 75/78, 96.2%) and 58 samples from The Gambia (n = 58/61, 95.1%) had a G6PD and a HBB genotype successfully assigned by the bead-based assay. Flow cytometry data available for n = 61 samples further supported the concordance between % G6PD normal/deficient cells and genotype. CONCLUSIONS: The bead based assay compares well to alternative measures of genotyping and phenotyping for G6PD. The screening is high throughput, adaptable to inclusion of multiple targets of interest and easily standardized.