Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Parasitology ; 151(3): 271-281, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38163962

RESUMEN

Parasitic gastrointestinal nematodes pose significant health risks to humans, livestock, and companion animals, and their control relies heavily on the use of anthelmintic drugs. Overuse of these drugs has led to the emergence of resistant nematode populations. Herein, a naturally occurring isolate (referred to as BCR) of the dog hookworm, Ancylostoma caninum, that is resistant to 3 major classes of anthelmintics is characterized. Various drug assays were used to determine the resistance of BCR to thiabendazole, ivermectin, moxidectin and pyrantel pamoate. When compared to a drug-susceptible isolate of A. caninum, BCR was shown to be significantly resistant to all 4 of the drugs tested. Multiple single nucleotide polymorphisms have been shown to impart benzimidazole resistance, including the F167Y mutation in the ß-tubulin isotype 1 gene, which was confirmed to be present in BCR through molecular analysis. The frequency of the resistant allele in BCR was 76.3% following its first passage in the lab, which represented an increase from approximately 50% in the founding hookworm population. A second, recently described mutation in codon 134 (Q134H) was also detected at lower frequency in the BCR population. Additionally, BCR exhibits an altered larval activation phenotype compared to the susceptible isolate, suggesting differences in the signalling pathways involved in the activation process which may be associated with resistance. Further characterization of this isolate will provide insights into the mechanisms of resistance to macrocyclic lactones and tetrahydropyrimidine anthelmintics.


Asunto(s)
Ancylostoma , Antihelmínticos , Humanos , Perros , Animales , Ancylostoma/genética , Ancylostomatoidea , Larva/genética , Antihelmínticos/farmacología , Resistencia a Múltiples Medicamentos/genética , Resistencia a Medicamentos/genética
2.
Parasitology ; 150(6): 511-523, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36883013

RESUMEN

Soil-transmitted nematodes (STNs) place a tremendous burden on health and economics worldwide with an estimate of at least 1.5 billion people, or 24% of the population, being infected with at least 1 STN globally. Children and pregnant women carry the heavier pathological burden, and disease caused by the blood-feeding worm in the intestine can result in anaemia and delays in physical and intellectual development. These parasites are capable of infecting and reproducing in various host species, but what determines host specificity remains unanswered. Identifying the molecular determinants of host specificity would provide a crucial breakthrough towards understanding the biology of parasitism and could provide attractive targets for intervention. To investigate specificity mechanisms, members of the hookworm genus Ancylostoma provide a powerful system as they range from strict specialists to generalists. Using transcriptomics, differentially expressed genes (DEGs) in permissive (hamster) and non-permissive (mouse) hosts at different early time points during infection with A. ceylanicum were examined. Analysis of the data has identified unique immune responses in mice, as well as potential permissive signals in hamsters. Specifically, immune pathways associated with resistance to infection are upregulated in the non-permissive host, providing a possible protection mechanism that is absent in the permissive host. Furthermore, unique signatures of host specificity that may inform the parasite that it has invaded a permissive host were identified. These data provide novel insight into the tissue-specific gene expression differences between permissive and non-permissive hosts in response to hookworm infection.


Asunto(s)
Anquilostomiasis , Infecciones por Uncinaria , Embarazo , Cricetinae , Femenino , Animales , Humanos , Ratones , Ancylostoma/genética , Anquilostomiasis/parasitología , Especificidad del Huésped , Transcriptoma , Intestinos
3.
Comput Biol Chem ; 92: 107464, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33667976

RESUMEN

Parasitic nematodes constitute one of the major threats to human health, causing diseases of major socioeconomic importance worldwide. Recent estimates indicate that more than 1 billion people are infected with parasitic nematodes around the world. Current measures to combat parasitic nematode infections include anthelmintic drugs. However, heavy exposure to anthelmintics has selected populations of livestock parasitic nematodes that are no longer susceptible to the drugs, rendering several anthelmintics useless for parasitic nematode control in many areas of the world. The rapidity with which anthelmintic resistance developed in response to these drugs suggests that increasing the selective pressure on human parasitic nematodes will also rapidly generate resistant worm populations. Therefore, development of new anthelmintics is of major importance before resistance becomes widespread in human parasitic nematode populations. G-Protein Coupled Receptors (GPCRs) represent an important target for many pharmacological interventions due to their ubiquitous expression in various cell types. GPCRs contribute to numerous physiological processes, and their ligand binding sites located on cell surfaces make them accessible targets and attractive substrates in terms of druggability. In fact, ∼35 % of Food and Drug Administration (FDA) and European Medicines Agency (EMA) approved drugs target GPCRs and their associated proteins, with over 300 additional drugs targeting GPCRs at the clinical trial stage. Nematode Chemosensory GPCRs (NemChRs) are unique to nematodes, and therefore represent ideal substrates for target-based drug discovery. Here we set out to identify NemChRs that are transcriptionally active inside the host, and to use these NemChRs in a reverse pharmacological screen to impede parasitic development. Our data identified several NemChRs, and we focused on one that was expressed in neuronal cells and exhibited the highest fold change in transcription after host activation. Next, we performed homology modelling and molecular dynamics simulations of this NemChR in order to conduct a virtual screening campaign to identify candidate drug targets which were ranked and selected for experimental testing in bioassays. Taken together, our results identify and characterize a candidate NemChR drug target, and provide a chemogenomic pipeline for identifying nematicide substrates.


Asunto(s)
Antihelmínticos/farmacología , Rhabditoidea/efectos de los fármacos , Animales , Antihelmínticos/síntesis química , Antihelmínticos/química , Evaluación Preclínica de Medicamentos , Simulación de Dinámica Molecular , Pruebas de Sensibilidad Parasitaria
4.
Int J Parasitol ; 49(5): 397-406, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30771359

RESUMEN

Soil-transmitted nematodes infect over a billion people and place several billion more at risk of infection. Hookworm disease is the most significant of these soil-transmitted nematodes, with over 500 million people infected. Hookworm infection can result in debilitating and sometimes fatal iron-deficiency anemia, which is particularly devastating in children and pregnant women. Currently, hookworms and other soil-transmitted nematodes are controlled by administration of a single dose of a benzimidazole to targeted populations in endemic areas. While effective, people are quickly re-infected, necessitating frequent treatment. Widespread exposure to anthelmintic drugs can place significant selective pressure on parasitic nematodes to generate resistance, which has severely compromised benzimidazole anthelmintics for control of livestock nematodes in many areas of the world. Here we report, to our knowledge, the first naturally occurring multidrug-resistant strain of the canine hookworm Ancylostoma caninum. We reveal that this isolate is resistant to fenbendazole at the clinical dosage of 50 mg/kg for 3 days. Our data shows that this strain harbors a fixed, single base pair mutation at amino acid 167 of the ß-tubulin isotype 1 gene, and by using CRISPR/Cas9 we demonstrate that introduction of this mutation into the corresponding amino acid in the orthologous ß-tubulin gene of Caenorhabditis elegans confers a similar level of resistance to thiabendazole. We also show that the isolate is resistant to the macrocyclic lactone anthelmintic ivermectin. Understanding the mechanism of anthelmintic resistance is important for rational design of control strategies to maintain the usefulness of current drugs, and to monitor the emergence of resistance. The isolate we describe represents the first multidrug-resistant strain of A. caninum reported, and our data reveal a resistance marker that can emerge naturally in response to heavy anthelminthic treatment.


Asunto(s)
Ancylostoma/efectos de los fármacos , Ancylostoma/aislamiento & purificación , Enfermedades de los Perros/parasitología , Resistencia a Medicamentos , Infecciones por Uncinaria/veterinaria , Ancylostoma/genética , Ancylostoma/crecimiento & desarrollo , Animales , Antihelmínticos/farmacología , Secuencia de Bases , Perros , Femenino , Proteínas del Helminto/genética , Infecciones por Uncinaria/parasitología , Ivermectina/farmacología , Masculino , Filogenia , Tiabendazol/farmacología , Tubulina (Proteína)/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...