Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Toxicology ; 506: 153835, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38857863

RESUMEN

Next Generation Risk Assessment (NGRA) is an exposure-led approach to safety assessment that uses New Approach Methodologies (NAMs). Application of NGRA has been largely restricted to assessments of consumer use of cosmetics and is not currently implemented in occupational safety assessments, e.g. under EU REACH. By contrast, a large proportion of regulatory worker safety assessments are underpinned by toxicological studies using experimental animals. Consequently, occupational safety assessment represents an area that would benefit from increasing application of NGRA to safety decision making. Here, a workflow for conducting NGRA under an occupational safety context was developed, which is illustrated with a case study chemical; sodium 2-hydroxyethane sulphonate (sodium isethionate or SI). Exposures were estimated using a standard occupational exposure model following a comprehensive life cycle assessment of SI and considering factory-specific data. Outputs of this model were then used to estimate internal exposures using a Physiologically Based Kinetic (PBK) model, which was constructed with SI specific Absorption, Distribution, Metabolism and Excretion (ADME) data. PBK modelling indicated a worst-case plasma maximum concentration (Cmax) of 0.8 µM across the SI life cycle. SI bioactivity was assessed in a battery of NAMs relevant to systemic, reproductive, and developmental toxicity; a cell stress panel, high throughput transcriptomics in three cell lines (HepG2, HepaRG and MCF-7 cells), pharmacological profiling and specific assays relating to developmental toxicity (Reprotracker and devTOX quickPredict). Points of Departure (PoDs) for SI ranged from 104 to 5044 µM. Cmax values obtained from PBK modelling of occupational exposures to SI were compared with PoDs from the bioactivity assays to derive Bioactivity Exposure Ratios (BERs) which demonstrated the safety for workers exposed to SI under current levels of factory specific risk management. In summary, the tiered and iterative workflow developed here represents an opportunity for integrating non animal approaches for a large subset of substances for which systemic worker safety assessment is required. Such an approach could be followed to ensure that animal testing is only conducted as a "last resort" e.g. under EU REACH.

2.
Environ Int ; 182: 108326, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38000237

RESUMEN

Deoxynivalenol (DON) is a mycotoxin frequently observed in cereals and cereal-based foods, with reported toxicological effects including reduced body weight, immunotoxicity and reproductive defects. The European Food Safety Authority used traditional risk assessment approaches to derive a deterministic Tolerable Daily Intake (TDI) of 1 µg/kg-day, however data from human biomarkers studies indicate widespread and variable exposure worldwide, necessitating more sophisticated and advanced methods to quantify population risk. The World Health Organization/International Programme on Chemical Safety (WHO/IPCS) has previously used DON as a case example in replacing the TDI with a probabilistic toxicity value, using default uncertainty and variability distributions to derive the Human Dose corresponding to an effect size M in the Ith percentile of the population (HDMI) for M = 5 % decrease in body weight and I = 1 %. In this study, we extend this case study by incorporating (1) Bayesian modeling approaches, (2) using both in vivo data and in vitro population new approach methods to replace default distributions for interspecies toxicokinetic (TK) differences and intraspecies TK and toxicodynamic (TD) variability, and (3) integrating biomonitoring data and probabilistic dose-response functions to characterize population risk distributions. We first derive an HDMI of 5.5 [1.4-24] µg/kg-day, also using TK modeling to converted the HDMI to Biomonitoring Equivalents, BEMI for comparison with biomonitoring data, with a blood BEMI of 0.53 [0.17-1.6] µg/L and a urinary excretion BEMI of 3.9 [1.0-16] µg/kg-day. We then illustrate how this integrative approach can advance quantitative risk characterization using two human biomonitoring datasets, estimating both the fraction of population with an effect size M ≥ 5 % as well as the distribution of effect sizes. Overall, we demonstrate that integration of Bayesian modeling, human biomonitoring data, and in vitro population-based TD data within the WHO/IPCS probabilistic framework yields more accurate, precise, and comprehensive risk characterization.


Asunto(s)
Micotoxinas , Humanos , Micotoxinas/toxicidad , Monitoreo Biológico , Teorema de Bayes , Medición de Riesgo/métodos , Grano Comestible , Peso Corporal
3.
Toxics ; 11(7)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37505552

RESUMEN

Human cell-based test methods can be used to evaluate potential hazards of mixtures and products of petroleum refining ("unknown or variable composition, complex reaction products, or biological materials" substances, UVCBs). Analyses of bioactivity and detailed chemical characterization of petroleum UVCBs were used separately for grouping these substances; a combination of the approaches has not been undertaken. Therefore, we used a case example of representative high production volume categories of petroleum UVCBs, 25 lower olefin substances from low benzene naphtha and resin oils categories, to determine whether existing manufacturing-based category grouping can be supported. We collected two types of data: nontarget ion mobility spectrometry-mass spectrometry of both neat substances and their organic extracts and in vitro bioactivity of the organic extracts in five human cell types: umbilical vein endothelial cells and induced pluripotent stem cell-derived hepatocytes, endothelial cells, neurons, and cardiomyocytes. We found that while similarity in composition and bioactivity can be observed for some substances, existing categories are largely heterogeneous. Strong relationships between composition and bioactivity were observed, and individual constituents that determine these associations were identified. Overall, this study showed a promising approach that combines chemical composition and bioactivity data to better characterize the variability within manufacturing categories of petroleum UVCBs.

4.
Front Public Health ; 10: 1038305, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36530659

RESUMEN

Protecting the health and safety of workers in industrial operations is a top priority. One of the resources used in industry to ensure worker safety is the occupational exposure limit (OEL). OELs are derived from the assessment and interpretation of empirical data from animal and/or human studies. There are various guidelines for the derivation and implementation of OELs globally, with a range of stakeholders (including regulatory bodies, governmental agencies, expert groups and others). The purpose of this manuscript is to supplement existing guidance with learnings from a multidisciplinary team approach within an industry setting. The framework we present is similar in construct to other risk assessment frameworks and includes: (1) problem formulation, (2) literature review, (3) weight of evidence considerations, (4) point of departure selection/derivation, (5) application of assessment factors, and the final step, (6) derivation of the OEL. Within each step are descriptions and examples to consider when incorporating data from various disciplines such as toxicology, epidemiology, and exposure science. This manuscript describes a technical framework by which available data relevant for occupational exposures is compiled, analyzed, and utilized to inform safety threshold derivation applicable to OELs.


Asunto(s)
Exposición Profesional , Salud Laboral , Humanos , Valores Limites del Umbral , Exposición Profesional/prevención & control , Medición de Riesgo , Industrias
5.
ALTEX ; 39(3): 388­404, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35288757

RESUMEN

The application of in vitro biological assays as new approach methodologies (NAMs) to support grouping of UVCB (unknown or variable composition, complex reaction products, and biological materials) substances has recently been demonstrated. In addition to cell-based phenotyping as NAMs, in vitro transcriptomic profiling is used to gain deeper mechanistic understanding of biological responses to chemicals and to support grouping and read-across. However, the value of gene expression profiling for characterizing complex substances like UVCBs has not been explored. Using 141 petroleum substance extracts, we performed dose-response transcriptomic profiling in human induced pluripotent stem cell (iPSC)-derived hepatocytes, cardiomyocytes, neurons, and endothelial cells, as well as cell lines MCF7 and A375. The goal was to determine whether transcriptomic data can be used to group these UVCBs and to further characterize the molecular basis for in vitro biological responses. We found distinct transcriptional responses for petroleum substances by manufacturing class. Pathway enrichment informed interpretation of effects of substances and UVCB petroleum-class. Transcriptional activity was strongly correlated with concentration of polycyclic aromatic compounds (PAC), especially in iPSC-derived hepatocytes. Supervised analysis using transcriptomics, alone or in combination with bioactivity data collected on these same substances/cells, suggest that transcriptomics data provide useful mechanistic information, but only modest additional value for grouping. Overall, these results further demonstrate the value of NAMs for grouping of UVCBs, identify informative cell lines, and provide data that could be used for justifying selection of substances for further testing that may be required for registration.


Asunto(s)
Células Madre Pluripotentes Inducidas , Petróleo , Bioensayo , Células Endoteliales , Humanos , Transcriptoma
6.
Anal Bioanal Chem ; 414(3): 1245-1258, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34668045

RESUMEN

Persistent organic pollutants (POPs) are xenobiotic chemicals of global concern due to their long-range transport capabilities, persistence, ability to bioaccumulate, and potential to have negative effects on human health and the environment. Identifying POPs in both the environment and human body is therefore essential for assessing potential health risks, but their diverse range of chemical classes challenge analytical techniques. Currently, platforms coupling chromatography approaches with mass spectrometry (MS) are the most common analytical methods employed to evaluate both parent POPs and their respective metabolites and/or degradants in samples ranging from d rinking water to biofluids. Unfortunately, different types of analyses are commonly needed to assess both the parent and metabolite/degradant POPs from the various chemical classes. The multiple time-consuming analyses necessary thus present a number of technical and logistical challenges when rapid evaluations are needed and sample volumes are limited. To address these challenges, we characterized 64 compounds including parent per- and polyfluoroalkyl substances (PFAS), pesticides, polychlorinated biphenyls (PCBs), industrial chemicals, and pharmaceuticals and personal care products (PPCPs), in addition to their metabolites and/or degradants, using ion mobility spectrometry coupled with MS (IMS-MS) as a potential rapid screening technique. Different ionization sources including electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) were employed to determine optimal ionization for each chemical. Collectively, this study advances the field of exposure assessment by structurally characterizing the 64 important environmental pollutants, assessing their best ionization sources, and evaluating their rapid screening potential with IMS-MS.


Asunto(s)
Contaminantes Orgánicos Persistentes/química , Contaminantes Orgánicos Persistentes/metabolismo , Monitoreo del Ambiente/métodos , Humanos , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos , Plaguicidas/análisis , Plaguicidas/metabolismo , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/metabolismo , Bifenilos Policlorados/análisis , Bifenilos Policlorados/metabolismo
7.
Environ Sci Technol ; 55(15): 10875-10887, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34304572

RESUMEN

Traditional experimental testing to identify endocrine disruptors that enhance estrogenic signaling relies on expensive and labor-intensive experiments. We sought to design a knowledge-based deep neural network (k-DNN) approach to reveal and organize public high-throughput screening data for compounds with nuclear estrogen receptor α and ß (ERα and ERß) binding potentials. The target activity was rodent uterotrophic bioactivity driven by ERα/ERß activations. After training, the resultant network successfully inferred critical relationships among ERα/ERß target bioassays, shown as weights of 6521 edges between 1071 neurons. The resultant network uses an adverse outcome pathway (AOP) framework to mimic the signaling pathway initiated by ERα and identify compounds that mimic endogenous estrogens (i.e., estrogen mimetics). The k-DNN can predict estrogen mimetics by activating neurons representing several events in the ERα/ERß signaling pathway. Therefore, this virtual pathway model, starting from a compound's chemistry initiating ERα activation and ending with rodent uterotrophic bioactivity, can efficiently and accurately prioritize new estrogen mimetics (AUC = 0.864-0.927). This k-DNN method is a potential universal computational toxicology strategy to utilize public high-throughput screening data to characterize hazards and prioritize potentially toxic compounds.


Asunto(s)
Rutas de Resultados Adversos , Receptor beta de Estrógeno , Receptor alfa de Estrógeno , Estrógenos , Ensayos Analíticos de Alto Rendimiento , Redes Neurales de la Computación
8.
Lab Invest ; 101(4): 490-502, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32778734

RESUMEN

As defined by the World Health Organization, an endocrine disruptor is an exogenous substance or mixture that alters function(s) of the endocrine system and consequently causes adverse health effects in an intact organism, its progeny, or (sub)populations. Traditional experimental testing regimens to identify toxicants that induce endocrine disruption can be expensive and time-consuming. Computational modeling has emerged as a promising and cost-effective alternative method for screening and prioritizing potentially endocrine-active compounds. The efficient identification of suitable chemical descriptors and machine-learning algorithms, including deep learning, is a considerable challenge for computational toxicology studies. Here, we sought to apply classic machine-learning algorithms and deep-learning approaches to a panel of over 7500 compounds tested against 18 Toxicity Forecaster assays related to nuclear estrogen receptor (ERα and ERß) activity. Three binary fingerprints (Extended Connectivity FingerPrints, Functional Connectivity FingerPrints, and Molecular ACCess System) were used as chemical descriptors in this study. Each descriptor was combined with four machine-learning and two deep- learning (normal and multitask neural networks) approaches to construct models for all 18 ER assays. The resulting model performance was evaluated using the area under the receiver- operating curve (AUC) values obtained from a fivefold cross-validation procedure. The results showed that individual models have AUC values that range from 0.56 to 0.86. External validation was conducted using two additional sets of compounds (n = 592 and n = 966) with established interactions with nuclear ER demonstrated through experimentation. An agonist, antagonist, or binding score was determined for each compound by averaging its predicted probabilities in relevant assay models as an external validation, yielding AUC values ranging from 0.63 to 0.91. The results suggest that multitask neural networks offer advantages when modeling mechanistically related endpoints. Consensus predictions based on the average values of individual models remain the best modeling strategy for computational toxicity evaluations.


Asunto(s)
Aprendizaje Automático , Modelos Estadísticos , Receptores de Estrógenos , Algoritmos , Animales , Biología Computacional , Bases de Datos de Compuestos Químicos , Aprendizaje Profundo , Disruptores Endocrinos/metabolismo , Disruptores Endocrinos/toxicidad , Humanos , Ratones , Unión Proteica , Receptores de Estrógenos/antagonistas & inhibidores , Receptores de Estrógenos/efectos de los fármacos , Receptores de Estrógenos/metabolismo
9.
ALTEX ; 38(1): 123-137, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33086383

RESUMEN

One of the most challenging areas in regulatory science is assessment of the substances known as UVCB (unknown or variable composition, complex reaction products and biological materials). Because the inherent complexity and variability of UVCBs present considerable challenges for establishing sufficient substance similarity based on chemical characteristics or other data, we hypothesized that new approach methodologies (NAMs), including in vitro test-derived biological activity signatures to characterize substance similarity, could be used to support grouping of UVCBs. We tested 141 petroleum substances as representative UVCBs in a compendium of 15 human cell types representing a variety of tissues. Petroleum substances were assayed in dilution series to derive point of departure estimates for each cell type and phenotype. Extensive quality control measures were taken to ensure that only high-confidence in vitro data were used to determine whether current groupings of these petroleum substances, based largely on the manufacturing process and physico-chemical properties, are justifiable. We found that bioactivity data-based groupings of petroleum substances were generally consistent with the manufacturing class-based categories. We also showed that these data, especially bioactivity from human induced pluripotent stem cell (iPSC)-derived and primary cells, can be used to rank substances in a manner highly concordant with their expected in vivo hazard potential based on their chemical compositional profile. Overall, this study demonstrates that NAMs can be used to inform groupings of UVCBs, to assist in identification of repre­sentative substances in each group for testing when needed, and to fill data gaps by read-across.


Asunto(s)
Alternativas a las Pruebas en Animales/métodos , Sustancias Peligrosas/química , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Petróleo/análisis , Petróleo/toxicidad , Pruebas de Toxicidad/métodos , Sustancias Peligrosas/toxicidad , Humanos
10.
Toxicol Sci ; 178(2): 391-403, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33078833

RESUMEN

Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes are an established model for testing potential chemical hazards. Interindividual variability in toxicodynamic sensitivity has also been demonstrated in vitro; however, quantitative characterization of the population-wide variability has not been fully explored. We sought to develop a method to address this gap by combining a population-based iPSC-derived cardiomyocyte model with Bayesian concentration-response modeling. A total of 136 compounds, including 54 pharmaceuticals and 82 environmental chemicals, were tested in iPSC-derived cardiomyocytes from 43 nondiseased humans. Hierarchical Bayesian population concentration-response modeling was conducted for 5 phenotypes reflecting cardiomyocyte function or viability. Toxicodynamic variability was quantified through the derivation of chemical- and phenotype-specific variability factors. Toxicokinetic modeling was used for probabilistic in vitro-to-in vivo extrapolation to derive population-wide margins of safety for pharmaceuticals and margins of exposure for environmental chemicals. Pharmaceuticals were found to be active across all phenotypes. Over half of tested environmental chemicals showed activity in at least one phenotype, most commonly positive chronotropy. Toxicodynamic variability factor estimates for the functional phenotypes were greater than those for cell viability, usually exceeding the generally assumed default of approximately 3. Population variability-based margins of safety for pharmaceuticals were correctly predicted to be relatively narrow, including some below 10; however, margins of exposure for environmental chemicals, based on population exposure estimates, generally exceeded 1000, suggesting they pose little risk at current general population exposures even to sensitive subpopulations. Overall, this study demonstrates how a high-throughput, human population-based, in vitro-in silico model can be used to characterize toxicodynamic population variability in cardiotoxic risk.


Asunto(s)
Cardiotoxicidad , Células Madre Pluripotentes Inducidas , Medición de Riesgo , Teorema de Bayes , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Modelos Biológicos , Miocitos Cardíacos , Fenotipo
11.
Environ Health Perspect ; 128(7): 77008, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32701041

RESUMEN

BACKGROUND: Xenobiotic metabolism is complex, and accounting for bioactivation and detoxification processes of chemicals remains among the most challenging aspects for decision making with in vitro new approach methods data. OBJECTIVES: Considering the physiological relevance of human organotypic culture models and their utility for high-throughput screening, we hypothesized that multidimensional chemical-biological profiling of chemicals and their major metabolites is a sensible alternative for the toxicological characterization of parent molecules vs. metabolites in vitro. METHODS: In this study, we tested 25 polychlorinated biphenyls (PCBs) [PCB 3, 11, 52, 126, 136, and 153 and their relevant metabolites (hydroxylated, methoxylated, sulfated, and quinone)] in concentration-response (10 nM-100µM) for effects in human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) and endothelial cells (ECs) (iPSC-derived and HUVECs). Functional phenotypic end points included effects on beating parameters and intracellular Ca2+ flux in CMs and inhibition of tubulogenesis in ECs. High-content imaging was used to evaluate cytotoxicity, mitochondrial integrity, and oxidative stress. RESULTS: Data integration of a total of 19 physicochemical descriptors and 36 in vitro phenotypes revealed that chlorination status and metabolite class are strong predictors of the in vitro cardiovascular effects of PCBs. Oxidation of PCBs, especially to di-hydroxylated and quinone metabolites, was associated with the most pronounced effects, whereas sulfation and methoxylation of PCBs resulted in diminished bioactivity. DISCUSSION: Risk characterization analysis showed that although in vitro derived effective concentrations exceeded the levels measured in the general population, risks cannot be ruled out due to the potential for population variability in susceptibility and the need to fill data gaps using read-across approaches. This study demonstrated a strategy for how in vitro data can be used to characterize human health risks from PCBs and their metabolites. https://doi.org/10.1289/EHP7030.


Asunto(s)
Sistema Cardiovascular/efectos de los fármacos , Bifenilos Policlorados/toxicidad , Células Endoteliales , Contaminantes Ambientales , Humanos , Células Madre Pluripotentes Inducidas
12.
Toxicol Appl Pharmacol ; 381: 114711, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31425687

RESUMEN

The potential for cardiotoxicity is carefully evaluated for pharmaceuticals, as it is a major safety liability. However, environmental chemicals are seldom tested for their cardiotoxic potential. Moreover, there is a large variability in both baseline and drug-induced cardiovascular risk in humans, but data are lacking on the degree to which susceptibility to chemically-induced cardiotoxicity may also vary. Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes have become an important in vitro model for drug screening. Thus, we hypothesized that a population-based model of iPSC-derived cardiomyocytes from a diverse set of individuals can be used to assess potential hazard and inter-individual variability in chemical effects on these cells. We conducted concentration-response screening of 134 chemicals (pharmaceuticals, industrial and environmental chemicals and food constituents) in iPSC-derived cardiomyocytes from 43 individuals, comprising both sexes and diverse ancestry. We measured kinetic calcium flux and conducted high-content imaging following chemical exposure, and utilized a panel of functional and cytotoxicity parameters in concentration-response for each chemical and donor. We show reproducible inter-individual variability in both baseline and chemical-induced effects on iPSC-derived cardiomyocytes. Further, chemical-specific variability in potency and degree of population variability were quantified. This study shows the feasibility of using an organotypic population-based human in vitro model to quantitatively assess chemicals for which little cardiotoxicity information is available. Ultimately, these results advance in vitro toxicity testing methodologies by providing an innovative tool for population-based cardiotoxicity screening, contributing to the paradigm shift from traditional animal models of toxicity to in vitro toxicity testing methods.


Asunto(s)
Cardiotoxicidad , Evaluación Preclínica de Medicamentos/métodos , Miocitos Cardíacos , Pruebas de Toxicidad/métodos , Calcio/metabolismo , Células Cultivadas , Femenino , Genotipo , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fenotipo , Grupos Raciales
13.
Regul Toxicol Pharmacol ; 101: 91-102, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30471335

RESUMEN

High-content screening data derived from physiologically-relevant in vitro models promise to improve confidence in data-integrative groupings for read-across in human health safety assessments. The biological data-based read-across concept is especially applicable to bioactive chemicals with defined mechanisms of toxicity; however, the challenge of data-derived groupings for chemicals that are associated with little or no bioactivity has not been explored. In this study, we apply a suite of organotypic and population-based in vitro models for comprehensive bioactivity profiling of twenty E-Series and P-Series glycol ethers, solvents with a broad variation in toxicity ranging from relatively non-toxic to reproductive and hematopoetic system toxicants. Both E-Series and P-Series glycol ethers elicited cytotoxicity only at high concentrations (mM range) in induced pluripotent stem cell-derived hepatocytes and cardiomyocytes. Population-variability assessment comprised a study of cytotoxicity in 94 human lymphoblast cell lines from 9 populations and revealed differences in inter-individual variability across glycol ethers, but did not indicate population-specific effects. Data derived from various phenotypic and transcriptomic assays revealed consistent bioactivity trends between both cardiomyocytes and hepatocytes, indicating a more universal, rather than cell-type specific mode-of-action for the tested glycol ethers in vitro. In vitro bioactivity-based similarity assessment using Toxicological Priority Index (ToxPi) showed that glycol ethers group according to their alcohol chain length, longer chains were associated with increased bioactivity. While overall in vitro bioactivity profiles did not correlate with in vivo toxicity data on glycol ethers, in vitro bioactivity of E-series glycol ethers were indicative of and correlated with in vivo irritation scores.


Asunto(s)
Éteres/toxicidad , Glicoles/toxicidad , Solventes/toxicidad , Animales , Línea Celular , Éteres/clasificación , Glicoles/clasificación , Humanos , Medición de Riesgo , Solventes/clasificación , Pruebas de Toxicidad
14.
Clin Pharmacol Ther ; 105(5): 1175-1186, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30346629

RESUMEN

"Thorough QT/corrected QT (QTc)" (TQT) studies are cornerstones of clinical cardiovascular safety assessment. However, TQT studies are resource intensive, and preclinical models predictive of the threshold of regulatory concern are lacking. We hypothesized that an in vitro model using induced pluripotent stem cell (iPSC)-derived cardiomyocytes from a diverse sample of human subjects can serve as a "TQT study in a dish." For 10 positive and 3 negative control drugs, in vitro concentration-QTc, computed using a population Bayesian model, accurately predicted known in vivo concentration-QTc. Moreover, predictions of the percent confidence that the regulatory threshold of 10 ms QTc prolongation would be breached were also consistent with in vivo evidence. This "TQT study in a dish," consisting of a population-based iPSC-derived cardiomyocyte model and Bayesian concentration-QTc modeling, has several advantages over existing in vitro platforms, including higher throughput, lower cost, and the ability to accurately predict the in vivo concentration range below the threshold of regulatory concern.


Asunto(s)
Cardiotoxinas , Evaluación Preclínica de Medicamentos/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Modelos Cardiovasculares , Miocitos Cardíacos/efectos de los fármacos , Cardiotoxinas/análisis , Cardiotoxinas/farmacocinética , Humanos , Técnicas In Vitro/métodos , Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/diagnóstico , Valor Predictivo de las Pruebas
15.
ESCAPE ; 43: 421-426, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534632

RESUMEN

The ultimate goal of the Texas A&M Superfund program is to develop comprehensive tools and models for addressing exposure to chemical mixtures during environmental emergency-related contamination events. With that goal, we aim to design a framework for optimal grouping of chemical mixtures based on their chemical characteristics and bioactivity properties, and facilitate comparative assessment of their human health impacts through read-across. The optimal clustering of the chemical mixtures guides the selection of sorption material in such a way that the adverse health effects of each group are mitigated. Here, we perform (i) hierarchical clustering of complex substances using chemical and biological data, and (ii) predictive modeling of the sorption activity of broad-acting materials via regression techniques. Dimensionality reduction techniques are also incorporated to further improve the results. We adopt several recent examples of chemical substances of Unknown or Variable composition Complex reaction products and Biological materials (UVCB) as benchmark complex substances, where the grouping of them is optimized by maximizing the Fowlkes-Mallows (FM) index. The effect of clustering method and different visualization techniques are shown to influence the communication of the groupings for read-across.

16.
Sci Rep ; 8(1): 14882, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30291268

RESUMEN

The adoption of a new technology into basic research, and industrial and clinical settings requires rigorous testing to build confidence in the reproducibility, reliability, robustness, and relevance of these models. Tissue chips are promising new technology, they have the potential to serve as a valuable tool in biomedical research, as well as pharmaceutical development with regards to testing for efficacy and safety. The principal goals of this study were to validate a previously established proximal tubule tissue chip model in an independent laboratory and to extend its utility to testing of nephrotoxic compounds. Here, we evaluated critical endpoints from the tissue chip developer laboratory, focusing on biological relevance (long-term viability, baseline protein and gene expression, ammoniagenesis, and vitamin D metabolism), and toxicity biomarkers. Tissue chip experiments were conducted in parallel with traditional 2D culture conditions using two different renal proximal tubule epithelial cell sources. The results of these studies were then compared to the findings reported by the tissue chip developers. While the overall transferability of this advanced tissue chip platform was a success, the reproducibility with the original report was greatly dependent on the cell source. This study demonstrates critical importance of developing microphysiological platforms using renewable cell sources.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/efectos de los fármacos , Dispositivos Laboratorio en un Chip , Antibacterianos/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Desarrollo de Medicamentos/instrumentación , Evaluación Preclínica de Medicamentos/instrumentación , Humanos , Túbulos Renales Proximales/metabolismo , Polimixina B/toxicidad , Transferencia de Tecnología , Vitamina D/metabolismo
17.
ALTEX ; 35(4): 441-452, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29999168

RESUMEN

Assessing inter-individual variability in responses to xenobiotics remains a substantial challenge, both in drug development with respect to pharmaceuticals and in public health with respect to environmental chemicals. Although approaches exist to characterize pharmacokinetic variability, there are no methods to routinely address pharmacodynamic variability. In this study, we aimed to demonstrate the feasibility of characterizing inter-individual variability in a human in vitro model. Specifically, we hypothesized that genetic variability across a population of iPSC-derived cardiomyocytes translates into reproducible variability in both baseline phenotypes and drug responses. We measured baseline and drug-related effects in iPSC-derived cardiomyocytes from 27 healthy donors on kinetic Ca2+ flux and high-content live cell imaging. Cells were treated in concentration-response with cardiotoxic drugs: isoproterenol (ß-adrenergic receptor agonist/positive inotrope), propranolol (ß-adrenergic receptor antagonist/negative inotrope), and cisapride (hERG channel inhibitor/QT prolongation). Cells from four of the 27 donors were further evaluated in terms of baseline and treatment-related gene expression. Reproducibility of phenotypic responses was evaluated across batches and time. iPSC-derived cardiomyocytes exhibited reproducible donor-specific differences in baseline function and drug-induced effects. We demonstrate the feasibility of using a panel of population-based organotypic cells from healthy donors as an animal replacement experimental model. This model can be used to rapidly screen drugs and chemicals for inter-individual variability in cardiotoxicity. This approach demonstrates the feasibility of quantifying inter-individual variability in xenobiotic responses, and can be expanded to other cell types for which in vitro populations can be derived from iPSCs.


Asunto(s)
Cardiotoxicidad/genética , Fármacos Cardiovasculares/toxicidad , Técnicas In Vitro , Miocitos Cardíacos/efectos de los fármacos , Fármacos Cardiovasculares/farmacología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Femenino , Voluntarios Sanos , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Masculino , Miocitos Cardíacos/fisiología , Fenotipo , Reproducibilidad de los Resultados
18.
BMC Bioinformatics ; 19(1): 80, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29506467

RESUMEN

BACKGROUND: Drawing integrated conclusions from diverse source data requires synthesis across multiple types of information. The ToxPi (Toxicological Prioritization Index) is an analytical framework that was developed to enable integration of multiple sources of evidence by transforming data into integrated, visual profiles. Methodological improvements have advanced ToxPi and expanded its applicability, necessitating a new, consolidated software platform to provide functionality, while preserving flexibility for future updates. RESULTS: We detail the implementation of a new graphical user interface for ToxPi (Toxicological Prioritization Index) that provides interactive visualization, analysis, reporting, and portability. The interface is deployed as a stand-alone, platform-independent Java application, with a modular design to accommodate inclusion of future analytics. The new ToxPi interface introduces several features, from flexible data import formats (including legacy formats that permit backward compatibility) to similarity-based clustering to options for high-resolution graphical output. CONCLUSIONS: We present the new ToxPi interface for dynamic exploration, visualization, and sharing of integrated data models. The ToxPi interface is freely-available as a single compressed download that includes the main Java executable, all libraries, example data files, and a complete user manual from http://toxpi.org .


Asunto(s)
Difusión de la Información , Modelos Teóricos , Programas Informáticos , Interfaz Usuario-Computador , Análisis por Conglomerados , Almacenamiento y Recuperación de la Información
19.
Front Genet ; 8: 168, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163636

RESUMEN

Cell-based assays are an attractive option to measure gene expression response to exposure, but the cost of whole-transcriptome RNA sequencing has been a barrier to the use of gene expression profiling for in vitro toxicity screening. In addition, standard RNA sequencing adds variability due to variable transcript length and amplification. Targeted probe-sequencing technologies such as TempO-Seq, with transcriptomic representation that can vary from hundreds of genes to the entire transcriptome, may reduce some components of variation. Analyses of high-throughput toxicogenomics data require renewed attention to read-calling algorithms and simplified dose-response modeling for datasets with relatively few samples. Using data from induced pluripotent stem cell-derived cardiomyocytes treated with chemicals at varying concentrations, we describe here and make available a pipeline for handling expression data generated by TempO-Seq to align reads, clean and normalize raw count data, identify differentially expressed genes, and calculate transcriptomic concentration-response points of departure. The methods are extensible to other forms of concentration-response gene-expression data, and we discuss the utility of the methods for assessing variation in susceptibility and the diseased cellular state.

20.
Assay Drug Dev Technol ; 15(6): 267-279, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28771372

RESUMEN

Endothelial cells (ECs) play a major role in blood vessel formation and function. While there is longstanding evidence for the potential of chemical exposures to adversely affect EC function and vascular development, the hazard potential of chemicals with respect to vascular effects is not routinely evaluated in safety assessments. Induced pluripotent stem cell (iPSC)-derived ECs promise to provide a physiologically relevant, organotypic culture model that is amenable for high-throughput (HT) EC toxicant screening and may represent a viable alternative to traditional in vitro models, including human umbilical vein endothelial cells (HUVECs). To evaluate the utility of iPSC-ECs for multidimensional HT toxicity profiling of chemicals, both iPSC-ECs and HUVECs were exposed to selected positive (angiogenesis inhibitors, cytotoxic agents) and negative compounds in concentration response for either 16 or 24 h in a 384-well plate format. Furthermore, chemical effects on vascularization were quantified using EC angiogenesis on biological (Geltrex™) and synthetic (SP-105 angiogenesis hydrogel) extracellular matrices. Cellular toxicity was assessed using high-content live cell imaging and the CellTiter-Glo® assay. Assay performance indicated good to excellent assay sensitivity and reproducibility for both cell types investigated. Both iPSC-derived ECs and HUVECs formed tube-like structures on Geltrex™ and hydrogel, an effect that was inhibited by angiogenesis inhibitors and cytotoxic agents in a concentration-dependent manner. The quality of HT assays in HUVECs was generally higher than that in iPSC-ECs. Altogether, this study demonstrates the capability of ECs for comprehensive assessment of the biological effects of chemicals on vasculature in a HT compatible format.


Asunto(s)
Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Células Endoteliales de la Vena Umbilical Humana/citología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Pruebas de Toxicidad , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Imagenología Tridimensional , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA