Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Brain Sci ; 14(5)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38790472

RESUMEN

Diffusion tensor imaging (DTI) enables the assessment of changes in brain tissue microstructure during maturation and ageing. In general, patterns of cerebral maturation and decline render non-monotonic lifespan trajectories of DTI metrics with age, and, importantly, the rate of microstructural changes is heterochronous for various white matter fibres. Recent studies have demonstrated that diffusion kurtosis imaging (DKI) metrics are more sensitive to microstructural changes during ageing compared to those of DTI. In a previous work, we demonstrated that the Cohen's d of mean diffusional kurtosis (dMK) represents a useful biomarker for quantifying maturation heterochronicity. However, some inferences on the maturation grades of different fibre types, such as association, projection, and commissural, were of a preliminary nature due to the insufficient number of fibres considered. Hence, the purpose of this follow-up work was to further explore the heterochronicity of microstructural maturation between pre-adolescence and middle adulthood based on DTI and DKI metrics. Using the effect size of the between-group parametric changes and Cohen's d, we observed that all commissural fibres achieved the highest level of maturity, followed by the majority of projection fibres, while the majority of association fibres were the least matured. We also demonstrated that dMK strongly correlates with the maxima or minima of the lifespan curves of DTI metrics. Furthermore, our results provide substantial evidence for the existence of spatial gradients in the timing of white matter maturation. In conclusion, our data suggest that DKI provides useful biomarkers for the investigation of maturation spatial heterogeneity and heterochronicity.

2.
Brain Sci ; 13(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36979198

RESUMEN

BACKGROUND: Attention-deficit-hyperactivity disorder (ADHD) is a neurodevelopmental disorder neurobiologically conceptualized as a network disorder in white and gray matter. A relatively new branch in ADHD research is sensory processing. Here, altered sensory processing i.e., sensory hypersensitivity, is reported, especially in the auditory domain. However, our perception is driven by a complex interplay across different sensory modalities. Our brain is specialized in binding those different sensory modalities to a unified percept-a process called multisensory integration (MI) that is mediated through fronto-temporal and fronto-parietal networks. MI has been recently described to be impaired for complex stimuli in adult patients with ADHD. The current study relates MI in adult ADHD with diffusion-weighted imaging. Connectome-based and graph-theoretic analysis was applied to investigate a possible relationship between the ability to integrate multimodal input and network-based ADHD pathophysiology. METHODS: Multishell, high-angular resolution diffusion-weighted imaging was performed on twenty-five patients with ADHD (six females, age: 30.08 (SD: 9.3) years) and twenty-four healthy controls (nine females; age: 26.88 (SD: 6.3) years). Structural connectome was created and graph theory was applied to investigate ADHD pathophysiology. Additionally, MI scores, i.e., the percentage of successful multisensory integration derived from the McGurk paradigm, were groupwise correlated with the structural connectome. RESULTS: Structural connectivity was elevated in patients with ADHD in network hubs mirroring altered default-mode network activity typically reported for patients with ADHD. Compared to controls, MI was associated with higher connectivity in ADHD between Heschl's gyrus and auditory parabelt regions along with altered fronto-temporal network integrity. CONCLUSION: Alterations in structural network integrity in adult ADHD can be extended to multisensory behavior. MI and the respective network integration in ADHD might represent the maturational cortical delay that extends to adulthood with respect to sensory processing.

3.
Neuroimage ; 244: 118605, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34592438

RESUMEN

BACKGROUND AND PURPOSE: The excess fluid as a result of vasogenic oedema and the subsequent tissue cavitation obscure the microstructural characterisation of ischaemic tissue by conventional diffusion and relaxometry MRI. They lead to a pseudo-normalisation of the water diffusivity and transverse relaxation time maps in the subacute and chronic phases of stroke. Within the context of diffusion MRI, the free water elimination and mapping method (FWE) with echo time dependence has been proposed as a promising approach to measure the amount of free fluid in brain tissue robustly and to eliminate its biasing effect on other biomarkers. In this longitudinal study of transient middle cerebral artery occlusion (MCAo) in the rat brain, we investigated the use of FWE MRI with echo time dependence for the characterisation of the tissue microstructure and explored the potential of the free water fraction as a novel biomarker of ischaemic tissue condition. METHODS: Adult rats received a transient MCAo. Diffusion- and transverse relaxation-weighted MRI experiments were performed longitudinally, pre-occlusion and on days 1, 3, 4, 5, 6, 7 and 10 after MCAo on four rats. Histology was performed for non-stroke and 1, 3 and 10 days after MCAo on three different rats at each time point. RESULTS: The free water fraction was homogeneously increased in the ischaemic cortex one day after stroke. Between three and ten days after stroke, the core of the ischaemic tissue showed a progressive normalisation in the amount of free water, whereas the inner and outer border zones of the ischaemic cortex depicted a large, monotonous increase with time. The specific lesions in brain sections were verified by H&E and immunostaining. The tissue-specific diffusion and relaxometry MRI metrics in the ischaemic cortex were significantly different compared to their conventional counterpart. CONCLUSIONS: Our results demonstrate that the free water fraction in FWE MRI with echo time dependence is a valuable biomarker, sensitive to the progressive degeneration in ischaemic tissue. We showed that part of the heterogeneity previously observed in conventional parameter maps can be accounted for by a heterogeneous distribution of free water in the tissue. Our results suggest that the temporal evolution of the free fluid fraction map at the core and inner border zone can be associated with the pathological changes linked to the evolution of vasogenic oedema. Namely, the homogeneous increase in free water one day after stroke and its tendency to normalise in the core of the ischaemic cortex starting three days after stroke, followed by a progressive increase in free water at the inner border zone from three to ten days after stroke. Finally, the monotonous increase in free fluid in the outer border zone of the cortex reflects the formation of fluid-filled cysts.


Asunto(s)
Agua Corporal/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Animales , Corteza Cerebral/diagnóstico por imagen , Técnicas Histológicas , Estudios Longitudinales , Modelos Animales , Ratas
4.
Neurooncol Adv ; 3(1): vdab044, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34013207

RESUMEN

BACKGROUND: Radiological differentiation of tumor progression (TPR) from treatment-related changes (TRC) in pretreated glioblastoma is crucial. This study aimed to explore the diagnostic value of diffusion kurtosis MRI combined with information derived from O-(2-[18F]-fluoroethyl)-l-tyrosine (18F-FET) PET for the differentiation of TPR from TRC in patients with pretreated glioblastoma. METHODS: Thirty-two patients with histomolecularly defined and pretreated glioblastoma suspected of having TPR were included in this retrospective study. Twenty-one patients were included in the TPR group, and 11 patients in the TRC group, as assessed by neuropathology or clinicoradiological follow-up. Three-dimensional (3D) regions of interest were generated based on increased 18F-FET uptake using a tumor-to-brain ratio of 1.6. Furthermore, diffusion MRI kurtosis maps were obtained from the same regions of interest using co-registered 18F-FET PET images, and advanced histogram analysis of diffusion kurtosis map parameters was applied to generated 3D regions of interest. Diagnostic accuracy was analyzed by receiver operating characteristic curve analysis and combinations of PET and MRI parameters using multivariate logistic regression. RESULTS: Parameters derived from diffusion MRI kurtosis maps show high diagnostic accuracy, up to 88%, for differentiating between TPR and TRC. Logistic regression revealed that the highest diagnostic accuracy of 94% (area under the curve, 0.97; sensitivity, 94%; specificity, 91%) was achieved by combining the maximum tumor-to-brain ratio of 18F-FET uptake and diffusion MRI kurtosis metrics. CONCLUSIONS: The combined use of 18F-FET PET and MRI diffusion kurtosis maps appears to be a promising approach to improve the differentiation of TPR from TRC in pretreated glioblastoma and warrants further investigation.

5.
NMR Biomed ; 33(4): e4210, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31926122

RESUMEN

Conventional diffusion-weighted (DW) MRI suffers from free water contamination due to the finite voxel size. The most common case of free water contamination occurs with cerebrospinal fluid (CSF) in voxels located at the CSF-tissue interface, such as at the ventricles in the human brain. Another case refers to intra-tissue free water as in vasogenic oedema. In order to avoid the bias in diffusion metrics, several multi-compartment methods have been introduced, which explicitly model the presence of a free water compartment. However, fitting multi-compartment models in DW MRI represents a well known ill conditioned problem. Although during the last decade great effort has been devoted to mitigating this estimation problem, the research field remains active. The aim of this work is to introduce the design, characterise the NMR properties and demonstrate the use of two dedicated anisotropic diffusion fibre phantoms, useful for the study of free water elimination (FWE) and mapping models. In particular, we investigate the recently proposed FWE diffusion tensor imaging approach, which takes explicit account of differences in the transverse relaxation times between the free water and tissue compartments.


Asunto(s)
Mapeo Encefálico , Imagen de Difusión por Resonancia Magnética , Fantasmas de Imagen , Agua/química , Anisotropía , Humanos , Protones
6.
Magn Reson Imaging ; 45: 7-17, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28870514

RESUMEN

Conventional fibre tractography methods based on diffusion tensor imaging exploit diffusion anisotropy and directionality in the range of low diffusion weightings (b-values). High b-value Biexponential Diffusion Tensor Analysis reported previously has demonstrated that fractional anisotropy of the slow diffusion component is essentially higher than that of conventional diffusion tensor imaging whereas popular compartment models associate this slow diffusion component with axonal water fraction. One of the primary aims of this study is to elucidate the feasibility and potential benefits of "microstructure-informed" whole-brain slow-diffusion fibre tracking (SDIFT) in humans. In vivo diffusion-weighted images in humans were acquired in the extended range of diffusion weightings≤6000smm-2 at 3T. Fast and slow diffusion tensors were reconstructed using the bi-exponential tensor decomposition, and a detailed statistical analysis of the relevant whole-brain tensor metrics was performed. We visualised three-dimensional fibre tracts in in vivo human brains using deterministic streamlining via the major eigenvector of the slow diffusion tensor. In particular, we demonstrated that slow-diffusion fibre tracking provided considerably higher fibre counts of long association fibres and allowed one to reconstruct more short association fibres than conventional diffusion tensor imaging. SDIFT is suggested to be useful as a complimentary method capable to enhance reliability and visualisation of the evaluated fibre pathways. It is especially informative in precortical areas where the uncertainty of the mono-exponential tensor evaluation becomes too high due to decreased anisotropy of low b-value diffusion in these areas. Benefits can be expected in assessment of the residual axonal integrity in tissues affected by various pathological conditions, in surgical planning, and in evaluation of cortical connectivity, in particular, between Brodmann's areas.


Asunto(s)
Encéfalo/anatomía & histología , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Persona de Mediana Edad , Vías Nerviosas/anatomía & histología , Vías Nerviosas/diagnóstico por imagen , Valores de Referencia , Reproducibilidad de los Resultados
7.
PLoS One ; 12(5): e0176192, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28467458

RESUMEN

Artificial, anisotropic fibre phantoms are nowadays increasingly used in the field of diffusion-weighted MRI. Such phantoms represent useful tools for, among others, the calibration of pulse sequences and validation of diffusion models since they can mimic well-known structural features of brain tissue on the one hand, but exhibit a reduced complexity, on the other. Among all materials, polyethylene fibres have been widely used due to their excellent properties regarding the restriction of water diffusion and surface relaxation properties. Yet the magnetic susceptibility of polyethylene can be distinctly lower than that of distilled water. This difference produces strong microscopic, background field gradients in the vicinity of fibre bundles which are not parallel to the static magnetic field. This, in turn, modulates the MRI signal behaviour. In the present work we investigate an approach to reduce the susceptibility-induced background gradients via reducing the heterogeneity in the internal magnetic susceptibility. An aqueous solution of magnesium chloride hexahydrate (MgCl2·6H2O) is used for this purpose. Its performance is demonstrated in dedicated anisotropic fibre phantoms with different geometrical configurations.


Asunto(s)
Magnetismo , Fantasmas de Imagen , Difusión , Imagen por Resonancia Magnética/métodos
8.
J Neurosci Res ; 95(9): 1796-1808, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28117486

RESUMEN

Glutamate is the major excitatory neurotransmitter in the human brain and has a central role in both intrinsic and stimulus-induced activity. We conducted a study in a cohort of healthy, male volunteers in which glutamate levels were measured in the posterior cingulate cortex (PCC) using 1H magnetic resonance spectroscopy at 3T. The advantages of simultaneous electroencephalography and magnetic resonance imaging (EEG-MRI) were exploited and the subjects were measured in the same session and under the same physiological conditions. Diffusion tensor imaging (DTI), functional MRI (fMRI) and EEG were measured in order to investigate the functional and microstructural correlates of glutamate. The concentration of glutamate (institute units) was calculated and those values were tested for correlation with the metrics of resting state fMRI, DTI, and EEG electrical sources. Our results showed that the concentration of glutamate in the PCC had a significant negative correlation with the tissue mean diffusivity in the same area. The analysis of resting state networks did not show any relationship between the concentration of glutamate and the intrinsic activity of the resting state networks. The concentration of glutamate showed a positive correlation with the electrical generators of α-1 frequency and a negative correlation with the generators of α-2 and ß-1 electrical generators. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Ácido Glutámico/metabolismo , Giro del Cíngulo/metabolismo , Adulto , Química Encefálica/fisiología , Imagen de Difusión por Resonancia Magnética , Electroencefalografía , Ácido Glutámico/análisis , Giro del Cíngulo/anatomía & histología , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino
9.
Neuroimage ; 144(Pt A): 12-22, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27639358

RESUMEN

The most common modality of diffusion MRI used in the ageing and development studies is diffusion tensor imaging (DTI) providing two key measures, fractional anisotropy and mean diffusivity. Here, we investigated diffusional changes occurring between childhood (average age 10.3 years) and mitddle adult age (average age 54.3 years) with the help of diffusion kurtosis imaging (DKI), a recent novel extension of DTI that provides additional metrics quantifying non-Gaussianity of water diffusion in brain tissue. We performed voxelwise statistical between-group comparison of diffusion tensor and kurtosis tensor metrics using two methods, namely, the tract-based spatial statistics (TBSS) and the atlas-based regional data analysis. For the latter, fractional anisotropy, mean diffusivity, mean diffusion kurtosis, and other scalar diffusion tensor and kurtosis tensor parameters were evaluated for white matter fibres provided by the Johns-Hopkins-University Atlas in the FSL toolkit (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). Within the same age group, all evaluated parameters varied depending on the anatomical region. TBSS analysis showed that changes in kurtosis tensor parameters beyond adolescence are more widespread along the skeleton in comparison to the changes of the diffusion tensor metrics. The regional data analysis demonstrated considerably larger between-group changes of the diffusion kurtosis metrics than of diffusion tensor metrics in all investigated regions. The effect size of the parametric changes between childhood and middle adulthood was quantified using Cohen's d. We used Cohen's d related to mean diffusion kurtosis to examine heterogeneous maturation of various fibres. The largest changes of this parameter (interpreted as reflecting the lowest level of maturation by the age of children group) were observed in the association fibres, cingulum (gyrus) and cingulum (hippocampus) followed by superior longitudinal fasciculus and inferior longitudinal fasciculus. The smallest changes were observed in the commissural fibres, forceps major and forceps minor. In conclusion, our data suggest that DKI is sensitive to developmental changes in local microstructure and environment, and is particularly powerful to unravel developmental differences in major association fibres, such as the cingulum and superior longitudinal fasciculus.


Asunto(s)
Imagen de Difusión Tensora/métodos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/crecimiento & desarrollo , Adulto , Factores de Edad , Biomarcadores , Niño , Humanos , Persona de Mediana Edad
10.
Magn Reson Med ; 78(1): 130-141, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27476684

RESUMEN

PURPOSE: To design a general framework for the optimization of an MRI protocol based on the the diffusion-weighted dual-echo steady-state (DW-DESS) sequence, enabling quantitative and simultaneous mapping of proton density (PD), relaxation times T1 and T2 and diffusion coefficient D. METHODS: A parameterization of the DW-DESS sequence minimizing the Cramér-Rao lower bound of each parameter estimate was proposed and tested in a phantom experiment. An extension of the protocol was implemented for brain imaging to return the rotationally invariant mean diffusivity (MD). RESULTS: In an NiCl2 -doped agar gel phantom wherein T1/T2=920/65 ms, the parameter estimation errors were below 3% for PD and T1 and below 7% for T2 and D while the measured signal-to-noise ratio always exceeded 20. In the human brain, the in vivo parametric maps obtained were overall in reasonable agreement with gold standard measurements, despite a broadening of the distributions due to physiological motion. CONCLUSION: Within the optimization framework presented here, DW-DESS images can be quantitatively interpreted to yield four intrinsic parameters of the tissue. Currently, the method is limited by the sensitivity of the DW-DESS sequence in terms of physiological motion. Magn Reson Med 78:130-141, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Algoritmos , Imagen de Difusión por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Pletismografía de Impedancia/métodos , Procesamiento de Señales Asistido por Computador , Difusión , Imagen de Difusión por Resonancia Magnética/instrumentación , Humanos , Aumento de la Imagen/métodos , Fantasmas de Imagen , Protones , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
11.
J Pain ; 17(7): 836-44, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27102895

RESUMEN

UNLABELLED: Despite a fundamental interest in the relationship between structure and function, the relationships between measures of white matter microstructural coherence and functional brain responses to pain are poorly understood. We investigated whether fractional anisotropy (FA) in 2 white matter regions in pathways associated with pain is related to the functional magnetic resonance imaging (fMRI) blood oxygen level-dependent (BOLD) response to thermal stimulation. BOLD fMRI was measured from 16 healthy male subjects during painful thermal stimulation of the right arm. Diffusion-weighted images were acquired for each subject and FA estimates were extracted from the posterior internal capsule and the cingulum (cingulate gyrus). These values were then included as covariates in the fMRI data analysis. We found BOLD response in the midcingulate cortex (MCC) to be positively related to FA in the posterior internal capsule and negatively related to FA in the cingulum. Our results suggest that the MCC's involvement in processing pain can be further delineated by considering how the magnitude of the BOLD response is related to white matter microstructural coherence and to subjective perception of pain. Considering relationships to white matter microstructural coherence in tracts involved in transmitting information to different parts of the pain network can help interpretation of MCC BOLD activation. PERSPECTIVE: Relationships between functional brain responses, white matter microstructural coherence, and subjective ratings are crucial for understanding the role of the MCC in pain. These findings provide a basis for investigating the effect of the reduced white matter microstructural coherence observed in some pain disorders on the functional responses to pain.


Asunto(s)
Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Hiperalgesia/patología , Sustancia Blanca/diagnóstico por imagen , Adulto , Anisotropía , Encéfalo/patología , Imagen de Difusión por Resonancia Magnética , Humanos , Hiperalgesia/diagnóstico por imagen , Hiperalgesia/etiología , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Oxígeno/sangre , Dimensión del Dolor , Temperatura , Adulto Joven
12.
PLoS One ; 9(4): e94531, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24722363

RESUMEN

Diffusion kurtosis imaging (DKI) is a promising extension of diffusion tensor imaging, giving new insights into the white matter microstructure and providing new biomarkers. Given the rapidly increasing number of studies, DKI has a potential to establish itself as a valuable tool in brain diagnostics. However, to become a routine procedure, DKI still needs to be improved in terms of robustness, reliability, and reproducibility. As it requires acquisitions at higher diffusion weightings, results are more affected by noise than in diffusion tensor imaging. The lack of standard procedures for post-processing, especially for noise correction, might become a significant obstacle for the use of DKI in clinical routine limiting its application. We considered two noise correction schemes accounting for the noise properties of multichannel phased-array coils, in order to improve the data quality at signal-to-noise ratio (SNR) typical for DKI. The SNR dependence of estimated DKI metrics such as mean kurtosis (MK), mean diffusivity (MD) and fractional anisotropy (FA) is investigated for these noise correction approaches in Monte Carlo simulations and in in vivo human studies. The intra-subject reproducibility is investigated in a single subject study by varying the SNR level and SNR spatial distribution. Then the impact of the noise correction on inter-subject variability is evaluated in a homogeneous sample of 25 healthy volunteers. Results show a strong impact of noise correction on the MK estimate, while the estimation of FA and MD was affected to a lesser extent. Both intra- and inter-subject SNR-related variability of the MK estimate is considerably reduced after correction for the noise bias, providing more accurate and reproducible measures. In this work, we have proposed a straightforward method that improves accuracy of DKI metrics. This should contribute to standardization of DKI applications in clinical studies making valuable inferences in group analysis and longitudinal studies.


Asunto(s)
Algoritmos , Imagen de Difusión Tensora/normas , Interpretación de Imagen Asistida por Computador , Sustancia Blanca/anatomía & histología , Adolescente , Adulto , Anisotropía , Imagen de Difusión Tensora/instrumentación , Imagen de Difusión Tensora/métodos , Humanos , Masculino , Método de Montecarlo , Reproducibilidad de los Resultados , Relación Señal-Ruido , Sustancia Blanca/fisiología
13.
PLoS One ; 9(2): e89225, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586610

RESUMEN

Recent diffusion MRI studies of stroke in humans and animals have shown that the quantitative parameters characterising the degree of non-Gaussianity of the diffusion process are much more sensitive to ischemic changes than the apparent diffusion coefficient (ADC) considered so far as the "gold standard". The observed changes exceeded that of the ADC by a remarkable factor of 2 to 3. These studies were based on the novel non-Gaussian methods, such as diffusion kurtosis imaging (DKI) and log-normal distribution function imaging (LNDFI). As shown in our previous work investigating the animal stroke model, a combined analysis using two methods, DKI and LNDFI provides valuable complimentary information. In the present work, we report the application of three non-Gaussian diffusion models to quantify the deviations from the Gaussian behaviour in stroke induced by transient middle cerebral artery occlusion in rat brains: the gamma-distribution function (GDF), the stretched exponential model (SEM), and the biexponential model. The main goal was to compare the sensitivity of various non-Gaussian metrics to ischemic changes and to investigate if a combined application of several models will provide added value in the assessment of stroke. We have shown that two models, GDF and SEM, exhibit a better performance than the conventional method and allow for a significantly enhanced visualization of lesions. Furthermore, we showed that valuable information regarding spatial properties of stroke lesions can be obtained. In particular, we observed a stratified cortex structure in the lesions that were well visible in the maps of the GDF and SEM metrics, but poorly distinguishable in the ADC-maps. Our results provided evidence that cortical layers tend to be differently affected by ischemic processes.


Asunto(s)
Encéfalo/patología , Imagen de Difusión por Resonancia Magnética , Modelos Estadísticos , Accidente Cerebrovascular/diagnóstico , Algoritmos , Animales , Modelos Animales de Enfermedad , Procesamiento de Imagen Asistido por Computador , Masculino , Ratas
14.
Neuroimage ; 84: 428-34, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24001455

RESUMEN

Sleep and wakefulness are crucial prerequisites for cognitive efficiency, the disturbances of which severely impact performance and mood as present e.g. after time zone traveling, in shift workers or patients with sleep or affective disorders. Based on their individual disposition to sleep and wakefulness, humans can be categorized as early (EC), late (LC) or intermediate (IC) chronotypes. While ECs tend to wake up early in the morning and find it difficult to remain awake beyond their usual bedtime, LCs go to bed late and have difficulties getting up. Beyond sleep/wake timings, chronotypes show distinct patterns of cognitive performance, gene expression, endocrinology and lifestyle. However, little is known about brain structural characteristics potentially underlying differences. Specifically, white matter (WM) integrity is crucial for intact brain function and has been related to various lifestyle habits, suggesting differences between chronotypes. Hence, the present study draws on Diffusion Tensor Imaging as a powerful tool to non-invasively probe WM architecture in 16 ECs, 23 LCs and 20 ICs. Track-based spatial statistics highlight that LCs were characterized by WM differences in the frontal and temporal lobes, cingulate gyrus and corpus callosum. Results are discussed in terms of findings reporting late chronotypes to exhibit a chronic form of jet lag accompanied with sleep disturbances, vulnerability to depression and higher consumption of nicotine and alcohol. This study has far-reaching implications for health and the economy. Ideally, work schedules should fit in with chronotype-specificity whenever possible.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Ritmo Circadiano/fisiología , Imagen de Difusión Tensora/métodos , Fibras Nerviosas Mielínicas/ultraestructura , Sueño/fisiología , Vigilia/fisiología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
15.
NMR Biomed ; 25(11): 1295-304, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22461260

RESUMEN

In this work, we report a case study of a stroke model in animals using two methods of quantification of the deviations from Gaussian behaviour: diffusion kurtosis imaging (DKI) and log-normal distribution function imaging (LNDFI). The affected regions were predominantly in grey rather than in white matter. The parameter maps were constructed for metrics quantifying the apparent diffusivity (evaluated from conventional diffusion tensor imaging, DKI and LNDFI) and for those quantifying the degree of deviations (mean kurtosis and a parameter σ characterising the width of the distribution). We showed that both DKI and LNDFI were able to dramatically enhance the visualisation of ischaemic lesions in comparison with conventional methods. The largest relative change in the affected versus healthy regions was observed in the mean kurtosis values. The average changes in the mean kurtosis and σ values in the lesions were a factor of two to three larger than the relative changes observed in the mean diffusivity. In conclusion, the applied methods promise valuable perspectives in the assessment of stroke.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Distribuciones Estadísticas , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Animales , Anisotropía , Difusión , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Sprague-Dawley
16.
Magn Reson Imaging ; 30(4): 518-26, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22285876

RESUMEN

Diffusion-weighted magnetic resonance imaging provides access to fiber pathways and structural integrity in fibrous tissues such as white matter in the brain. In order to enable better access to the sensitivity of the diffusion indices to the underlying microstructure, it is important to develop artificial model systems that exhibit a well-known structure, on the one hand, but benefit from a reduced complexity on the other hand. In this work, we developed a novel multisection diffusion phantom made of polyethylene fibers tightly wound on an acrylic support. The phantom exhibits three regions with different geometrical configuration of fibers: a region with fibers crossing at right angles, a region with parallel fibers and homogeneous density, and, finally, a region with parallel fibers but with a gradient of fiber density along the axis of symmetry. This gives rise to a gradual change of the degree of anisotropy within the same phantom. In this way, the need to construct several phantoms with different fiber densities is avoided, and one can access different fractional anisotropies in the same experiment under the same physical conditions. The properties of the developed phantom are demonstrated by means of diffusion tensor imaging and diffusion kurtosis imaging. The measurements were performed using a diffusion-weighted spin-echo and a diffusion-weighted stimulated-echo pulse sequence programmed in-house. The influence of the fiber density packing on the diffusion parameters was analyzed. We also demonstrate how the novel phantom can be used for the validation of high angular resolution diffusion imaging data analysis.


Asunto(s)
Mapeo Encefálico/métodos , Imagen de Difusión por Resonancia Magnética , Fantasmas de Imagen , Algoritmos , Anisotropía , Diseño de Equipo , Imagenología Tridimensional , Fibras Nerviosas Mielínicas/ultraestructura , Polietileno
17.
Med Image Anal ; 16(2): 536-48, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22209560

RESUMEN

Magnetic resonance images tend to be influenced by various random factors usually referred to as "noise". The principal sources of noise and related artefacts can be divided into two types: arising from hardware (acquisition coil arrays, gradient coils, field inhomogeneity); and arising from the subject (physiological noise including body motion, cardiac pulsation or respiratory motion). These factors negatively affect the resolution and reproducibility of the images. Therefore, a proper noise treatment is important for improving the performance of clinical and research investigations. Noise reduction becomes especially critical for the images with a low signal-to-noise ratio, such as those typically acquired in diffusion tensor imaging at high diffusion weightings. The standard methods of signal correction usually assume a uniform distribution of the standard deviation of the noise across the image and evaluate a single correction parameter for the whole image. We pursue a more advanced approach based on the assumption of an inhomogeneous distribution of noise in space and evaluate correction factors for each voxel individually. The Rician nature of the underlying noise is considered for low and high signal-to-noise ratios. The approach developed here has been examined using numerical simulations and in vivo brain diffusion tensor imaging experiments. The efficacy and usefulness of this approach is demonstrated here and the resultant effective tool is described.


Asunto(s)
Algoritmos , Encéfalo/anatomía & histología , Imagen de Difusión por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Inteligencia Artificial , Humanos , Aumento de la Imagen/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
18.
Materials (Basel) ; 5(5): 966-984, 2012 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-28817019

RESUMEN

Molecular diffusion of triblock copolymers poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) in water was studied with the help of Pulsed Field Gradient NMR in the broad range of polymer weight fractions from 0.09 to 0.8. Owing to amphiphilic nature of the molecules, these block copolymers exhibit rich self-organization properties when mixed with water. In particular, at ambient temperatures they form micelles and three liquid crystalline mesophases: cubic, hexagonal, and lamellar. The corresponding super-molecular structure formations were studied with the same block copolymer and at the same temperature. Self-assembly of molecules was shown to produce "pore-like" effects on their self-diffusion properties by imposing severe constraints on the dimensionality of propagation. Diffusion in the hexagonal phase was shown to be quasi one-dimensional in the direction parallel to the long axis of the ordered molecular rods. In the lamellar phase, diffusion was found to be quasi two-dimensional, in the plane of the lamellar structures. The observed diffusion anisotropy was attributed to the effects of the specific molecular ordering on the mesoscopic length scale.

19.
J Magn Reson ; 213(1): 136-44, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21993763

RESUMEN

The signal response measured in diffusion tensor imaging is subject to detrimental influences caused by noise. Noise fields arise due to various contributions such as thermal and physiological noise and sources related to the hardware imperfection. As a result, diffusion tensors estimated by different linear and non-linear least squares methods in absence of a proper noise correction tend to be substantially corrupted. In this work, we propose an advanced tensor estimation approach based on the least median squares method of the robust statistics. Both constrained and non-constrained versions of the method are considered. The performance of the developed algorithm is compared to that of the conventional least squares method and of the alternative robust methods proposed in the literature. Two examples of simulated diffusion attenuations and experimental in vivo diffusion data sets were used as a basis for comparison. The robust algorithms were shown to be advantageous compared to the least squares method in the cases where elimination of the outliers is desirable. Additionally, the constraints were applied in order to prevent generation of the non-positive definite tensors and reduce related artefacts in the maps of fractional anisotropy. The developed method can potentially be exploited also by other MR techniques where a robust regression or outlier localisation is required.


Asunto(s)
Imagen de Difusión Tensora/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Simulación por Computador , Imagen de Difusión Tensora/estadística & datos numéricos , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Análisis de los Mínimos Cuadrados , Dinámicas no Lineales , Relación Señal-Ruido
20.
Neuroimage ; 57(3): 1087-102, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21596141

RESUMEN

Diffusion tensor imaging (DTI) permits non-invasive probing of tissue microstructure and provides invaluable information in brain diagnostics. Our aim was to examine approaches capable of capturing more detailed information on the propagation mechanisms and underlying tissue microstructure in comparison to the conventional methods. In this work, we report a detailed in vivo diffusion study of the human brain in an extended range of the b-factors (up to 7000 s mm(-2)) performed on a group of 14 healthy volunteers at 3T. Combined diffusion kurtosis imaging (DKI) and biexponential diffusion tensor analysis (BEDTA) were applied to quantify the attenuation curves. New quantitative indices are suggested as map parameters and are shown to improve the underlying structure contrast in comparison to conventional DTI. In particular, fractional anisotropy maps related to the slow diffusion tensor are shown to attain significantly higher values and to substantially improve white matter mapping. This is demonstrated for the specified regions of the frontal and occipital lobes and for the anterior cingulate. The findings of this work are substantiated by the statistical analysis of the whole slice histograms averaged over 14 subjects. Colour-coded directional maps related to the fast and slow diffusion tensors in human brain tissue are constructed for the first time and these demonstrate a high degree of axial co-alignment of the two tensors in the white matter regions. It is concluded that a combined DKI and BEDTA offers a promising framework for monitoring tissue alteration during development and degeneration or as a consequence of the neurological disease.


Asunto(s)
Algoritmos , Mapeo Encefálico/métodos , Encéfalo/fisiología , Imagen de Difusión Tensora , Interpretación de Imagen Asistida por Computador/métodos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...