Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 2571, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35546144

RESUMEN

Many real-world mission-critical applications require continual online learning from noisy data and real-time decision making with a defined confidence level. Brain-inspired probabilistic models of neural network can explicitly handle the uncertainty in data and allow adaptive learning on the fly. However, their implementation in a compact, low-power hardware remains a challenge. In this work, we introduce a novel hardware fabric that can implement a new class of stochastic neural network called Neural Sampling Machine (NSM) by exploiting the stochasticity in the synaptic connections for approximate Bayesian inference. We experimentally demonstrate an in silico hybrid stochastic synapse by pairing a ferroelectric field-effect transistor (FeFET)-based analog weight cell with a two-terminal stochastic selector element. We show that the stochastic switching characteristic of the selector between the insulator and the metallic states resembles the multiplicative synaptic noise of the NSM. We perform network-level simulations to highlight the salient features offered by the stochastic NSM such as performing autonomous weight normalization for continual online learning and Bayesian inferencing. We show that the stochastic NSM can not only perform highly accurate image classification with 98.25% accuracy on standard MNIST dataset, but also estimate the uncertainty in prediction (measured in terms of the entropy of prediction) when the digits of the MNIST dataset are rotated. Building such a probabilistic hardware platform that can support neuroscience inspired models can enhance the learning and inference capability of the current artificial intelligence (AI).


Asunto(s)
Inteligencia Artificial , Redes Neurales de la Computación , Teorema de Bayes , Encéfalo , Sinapsis
2.
ACS Nano ; 15(3): 4155-4164, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33646747

RESUMEN

Resistance switching in metal-insulator-metal structures has been extensively studied in recent years for use as synaptic elements for neuromorphic computing and as nonvolatile memory elements. However, high switching power requirements, device variabilities, and considerable trade-offs between low operating voltages, high on/off ratios, and low leakage have limited their utility. In this work, we have addressed these issues by demonstrating the use of ultraporous dielectrics as a pathway for high-performance resistive memory devices. Using a modified atomic layer deposition based technique known as sequential infiltration synthesis, which was developed originally for improving polymer properties such as enhanced etch resistance of electron-beam resists and for the creation of films for filtration and oleophilic applications, we are able to create ∼15 nm thick ultraporous (pore size ∼5 nm) oxide dielectrics with up to 73% porosity as the medium for filament formation. We show, using the Ag/Al2O3 system, that the ultraporous films result in ultrahigh on/off ratio (>109) at ultralow switching voltages (∼±600 mV) that are 10× smaller than those for the bulk case. In addition, the devices demonstrate fast switching, pulsed endurance up to 1 million cycles. and high temperature (125 °C) retention up to 104 s, making this approach highly promising for large-scale neuromorphic and memory applications. Additionally, this synthesis methodology provides a compatible, inexpensive route that is scalable and compatible with existing semiconductor nanofabrication methods and materials.

3.
Nat Commun ; 10(1): 3299, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31341167

RESUMEN

The striking similarity between biological locomotion gaits and the evolution of phase patterns in coupled oscillatory network can be traced to the role of central pattern generator located in the spinal cord. Bio-inspired robotics aim at harnessing this control approach for generation of rhythmic patterns for synchronized limb movement. Here, we utilize the phenomenon of synchronization and emergent spatiotemporal pattern from the interaction among coupled oscillators to generate a range of locomotion gait patterns. We experimentally demonstrate a central pattern generator network using capacitively coupled Vanadium Dioxide nano-oscillators. The coupled oscillators exhibit stable limit-cycle oscillations and tunable natural frequencies for real-time programmability of phase-pattern. The ultra-compact 1 Transistor-1 Resistor implementation of oscillator and bidirectional capacitive coupling allow small footprint area and low operating power. Compared to biomimetic CMOS based neuron and synapse models, our design simplifies on-chip implementation and real-time tunability by reducing the number of control parameters.


Asunto(s)
Generadores de Patrones Centrales/fisiología , Marcha , Nanotecnología , Robótica , Relojes Biológicos , Nanopartículas , Óxidos , Compuestos de Vanadio
4.
Nanoscale ; 11(13): 6016-6022, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30869095

RESUMEN

The 1T phase of tantalum disulfide (1T-TaS2) possesses a variety of charge-density-wave (CDW) orders, and as a result, it attracts an increasing amount of academic and technological interest. Researchers have devoted tremendous efforts towards understanding the impacts of doping, alloying, intercalation or other triggering agents on its charge density wave orders. In this work, we demonstrate that incorporating potassium chloride (KCl) during chemical vapor deposition (CVD) of TaS2 can control the phase (1T, 2H or metal nanowires) via the intercalation of potassium ions (K+) between TaS2 layers. Finally, we demonstrate that K+ not only impacts the structure during synthesis but also strongly impacts the CDW phase transition as a function of temperature, increasing the nearly commensurate (NCCDW) to commensurate (CCDW) transition to just below room temperature.

5.
Beilstein J Nanotechnol ; 3: 712-21, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23213635

RESUMEN

Monitoring emissions in high-temperature-combustion applications is very important for regulating the discharge of gases such as NO(2) and CO as well as unburnt fuel into the environment. This work reports the detection of H(2) and CO gases by employing a metal-metal oxide nanocomposite (gold-yttria stabilized zirconia (Au-YSZ)) film fabricated through layer-by-layer physical vapor deposition (PVD). The change in the peak position of the localized surface plasmon resonance (LSPR) was monitored as a function of time and gas concentration. The responses of the films were preferential towards H(2), as observed from the results of exposing the films to the gases at temperatures of 500 °C in a background of dry air. Characterization of the samples by XRD and SEM enabled the correlation of material properties with the differences in the CO- and H(2)-induced LSPR peak shifts, including the relative desensitization towards NO(2). Sensing characteristics of films with varying support thicknesses and metal-particle diameters have been studied, and the results are presented. A comparison has been made to films fabricated through co-sputtered PVD, and the calibration curves of the sensing response show a preferential response towards H(2). The distinction between H(2) and CO responses is also seen through the use of principal-component analysis (PCA). Such material arrangements, which can be tuned for their selectivity by changing certain parameters such as particle size, support thickness, etc., have direct applications within optical chemical sensors for turbine engines, solid-oxide fuel cells, and other high-temperature applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...