Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biol Reprod ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39077996

RESUMEN

Sertoli cells, omnipresent, somatic cells within the seminiferous tubules of the mammalian testis are essential to male fertility. Sertoli cells maintain the integrity of the testicular microenvironment, regulate hormone synthesis, and of particular importance, synthesize the active derivative of vitamin A, all trans retinoic acid (atRA), which is required for germ cell differentiation and the commitment of male germ cells to meiosis. Stages VIII-IX, when atRA synthesis occurs in the testis, coincides with multiple germ cell development and testicular restructuring events that rely on Sertoli cell gene products to proceed normally. In this study, we have synchronized and captured the mouse testis at four recurrent points of atRA synthesis to observe transcriptomic changes within Sertoli cells as mice age and the Sertoli cells are exposed to increasingly developed germ cell subtypes. This work provides comprehensive, high-resolution characterization of the timing of induction of functional Sertoli cell genes across the first wave of spermatogenesis, and outlines in silico predictions of germ cell derived signaling mechanisms targeting Sertoli cells. We have found that Sertoli cells adapt to their environment, especially to the needs of the germ cell populations present and establish germ-Sertoli cell and Sertoli-Sertoli cell junctions early, but gain many of their known immune-regulatory and protein secretory functions in preparation for spermiogenesis and spermiation. Additionally, we have found unique patterns of germ-Sertoli signaling present at each endogenous pulse of atRA, suggesting individual functions of the various germ cells in germ-Sertoli communication.

2.
J Mol Endocrinol ; 69(4): T51-T57, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35670629

RESUMEN

Spermatogenesis is a highly organized and regulated process that requires the constant production of millions of gametes over the reproductive lifetime of the mammalian male. This is possible because of an active stem cell pool and an ordered entry into the germ cell developmental sequence. The ordered entry is a result of the synthesis and action of retinoic acid allowing for the onset of spermatogonial differentiation and an irreversible commitment to spermatogenesis. The periodic appearance and actions of retinoic acid along the seminiferous tubules is a result of the interactions between germ cells and Sertoli cells that result in the generation and maintenance of the cycle of the seminiferous epithelium and is the subject of this review.


Asunto(s)
Espermatogénesis , Tretinoina , Animales , Masculino , Mamíferos/metabolismo , Epitelio Seminífero/metabolismo , Células de Sertoli/metabolismo , Espermatogonias/metabolismo , Testículo/metabolismo , Tretinoina/metabolismo , Tretinoina/farmacología
3.
Front Endocrinol (Lausanne) ; 13: 871225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574006

RESUMEN

The transition of undifferentiated A spermatogonia to differentiated spermatogonia requires the action of retinoic acid (RA). The synthesis of retinoic acid from retinal in the seminiferous epithelium is a result of the action of aldehyde dehydrogenases termed ALDH1A1, ALDH1A2, and ALDH1A3. We used a mouse with a global deletion of the Aldh1a1 gene that is phenotypically normal and the CRE-loxP approach to eliminate Aldh1a2 genes globally and from Sertoli cells and germ cells. The results show that global elimination of Aldh1a1 and Aldh1a2 genes blocks spermatogenesis but does not appear to affect viability. The cell specific elimination of Aldh1a2 gene showed that retinoic acid synthesis by Sertoli cells is required for the initial round of spermatogonial differentiation but that there is no requirement for retinoic acid synthesis by germ cells. In both the global gene deletion and the cell specific gene deletions the maintenance of Aldh1a3 activity could not compensate.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1/metabolismo , Retinal-Deshidrogenasa/metabolismo , Espermatogénesis , Espermatogonias , Animales , Diferenciación Celular , Masculino , Ratones , Retinal-Deshidrogenasa/genética , Células de Sertoli , Espermatogénesis/genética , Tretinoina
4.
Nutrients ; 14(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35334951

RESUMEN

Retinoic acid, an active metabolite of vitamin A, is necessary for many developmental processes in mammals. Much of the field of reproduction has looked toward retinoic acid as a key transcriptional regulator and catalyst of differentiation events. This review focuses on the effects of retinoic acid on male and female gamete formation and regulation. Within spermatogenesis, it has been well established that retinoic acid is necessary for the proper formation of the blood-testis barrier, spermatogonial differentiation, spermiation, and assisting in meiotic completion. While many of the roles of retinoic acid in male spermatogenesis are known, investigations into female oogenesis have provided differing results.


Asunto(s)
Espermatogénesis , Tretinoina , Animales , Femenino , Masculino , Mamíferos/metabolismo , Oogénesis , Espermatogonias/metabolismo , Tretinoina/farmacología , Vitamina A/metabolismo
5.
Biol Reprod ; 105(6): 1591-1602, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34494084

RESUMEN

Sertoli cells are a critical component of the testis environment for their role in maintaining seminiferous tubule structure, establishing the blood-testis barrier, and nourishing maturing germ cells in a specialized niche. This study sought to uncover how Sertoli cells are regulated in the testis environment via germ cell crosstalk in the mouse. We found two major clusters of Sertoli cells as defined by their transcriptomes in Stages VII-VIII of the seminiferous epithelium and a cluster for all other stages. Additionally, we examined transcriptomes of germ cell-deficient testes and found that these existed in a state independent of either of the germ cell-sufficient clusters. Altogether, we highlight two main transcriptional states of Sertoli cells in an unperturbed testis environment, and a germ cell-deficient environment does not allow normal Sertoli cell transcriptome cycling and results in a state unique from either of those seen in Sertoli cells from a germ cell-sufficient environment.


Asunto(s)
Células de Sertoli/citología , Transducción de Señal , Espermatozoides/fisiología , Animales , Masculino , Ratones
6.
Asian J Androl ; 23(6): 549-554, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34472453

RESUMEN

Male meiosis is a complex process whereby spermatocytes undergo cell division to form haploid cells. This review focuses on the role of retinoic acid (RA) in meiosis, as well as several processes regulated by RA before cell entry into meiosis that are critical for proper meiotic entry and completion. Here, we discuss RA metabolism in the testis as well as the roles of stimulated by retinoic acid gene 8 (STRA8) and MEIOSIN, which are responsive to RA and are critical for meiosis. We assert that transcriptional regulation in the spermatogonia is critical for successful meiosis.


Asunto(s)
Meiosis/efectos de los fármacos , Tretinoina/metabolismo , Animales , Diferenciación Celular/genética , Humanos , Espermatogénesis/efectos de los fármacos , Espermatogénesis/fisiología
7.
Mol Reprod Dev ; 88(2): 128-140, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33400349

RESUMEN

Spermatogonial development is a key process during spermatogenesis to prepare germ cells to enter meiosis. While the initial point of spermatogonial differentiation is well-characterized, the development of spermatogonia from the onset of differentiation to the point of meiotic entry has not been well defined. Further, STRA8 is highly induced at the onset of spermatogonial development but its function in spermatogonia has not been defined. To better understand how STRA8 impacts spermatogonia, we performed RNA-sequencing in both wild-type and STRA8 knockout mice at multiple timepoints during retinoic acid (RA)-stimulated spermatogonial development. As expected, in spermatogonia from wild-type mice we found that steady-state levels of many transcripts that define undifferentiated progenitor cells were decreased while transcripts that define the differentiating spermatogonia were increased as a result of the actions of RA. However, the spermatogonia from STRA8 knockout mice displayed a muted RA response such that there were more transcripts typical of undifferentiated cells and fewer transcripts typical of differentiating cells following RA action. While spermatogonia from STRA8 knockout mice can ultimately form spermatocytes that fail to complete meiosis, it appears that the defect likely begins as a result of altered messenger RNA levels during spermatogonial differentiation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Regulación del Desarrollo de la Expresión Génica , Espermatogénesis/fisiología , Espermatogonias/crecimiento & desarrollo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Masculino , Meiosis/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , RNA-Seq , Espermatogénesis/efectos de los fármacos , Espermatogénesis/genética , Transcripción Genética , Tretinoina/farmacología
8.
Dev Cell ; 52(4): 397-398, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32097650

RESUMEN

The capacity to undergo meiosis defines vertebrate germ cells, yet mechanisms driving initiation of this specialized process are largely undefined. In this issue of Developmental Cell,Ishiguro et al. (2020) identified the transcription factor MEIOSIN as a gatekeeper of meiotic initiation in both male and female germ cells.


Asunto(s)
Células Germinativas , Meiosis , Animales , Femenino , Regulación de la Expresión Génica , Masculino , Mitosis , Factores de Transcripción
9.
Andrology ; 8(4): 892-897, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31670467

RESUMEN

BACKGROUND: Spermatogenesis in mammals is organized in a manner that maximizes sperm production. The central aspect of this organization is the cycle of the seminiferous epithelium that is characterized by an asynchronous repeating series of germ cell associations. These cell associations are the result of a fixed point of entry into the cycle at regular short time intervals and the longer time required for cells to fully differentiate and exit the cycle. OBJECTIVE: This review will examine the current information on the action and metabolism of retinoic acid in the testis, the interaction of retinoic acid (RA) with the cycle and the spermatogenic wave, and the mechanisms that can lead to synchronous spermatogenesis. Finally, the unique applications of synchronous spermatogenesis to the study of the cycle and the mass isolation of specific germ cell populations are described. MATERIALS AND METHODS: Retinoic acid metabolism and spermatogonial differentiation have been examined by gene deletions, immunocytochemistry, chemical inhibitors, and mass spectrometry. RESULTS, DISCUSSION, AND CONCLUSION: Both the Sertoli cells and the germ cells have the capacity to synthesize retinoic acid from retinol and in the mouse the entry into the cycle of the seminiferous epithelium, and the subsequent conversion of undifferentiated spermatogonia into differentiating spermatogonia is governed by a peak of RA synthesis occurring at stages VIII-IX of the cycle. Normal asynchronous spermatogenesis can be modified by altering RA levels, and as a result the entire testis will consist of a few closely related stages of the cycle.


Asunto(s)
Espermatogénesis/fisiología , Espermatogonias/citología , Espermatogonias/metabolismo , Espermatozoides/citología , Espermatozoides/metabolismo , Animales , Diferenciación Celular , Humanos , Masculino , Ratones , Células de Sertoli/metabolismo
10.
Endocrinology ; 160(12): 2929-2945, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31621880

RESUMEN

Premature overexposure to thyroid hormone causes profound effects on testis growth, spermatogenesis, and male fertility. We used genetic mouse models of type 3 deiodinase (DIO3) deficiency to determine the genetic programs affected by premature thyroid hormone action and to define the role of DIO3 in regulating thyroid hormone economy in testicular cells. Gene expression profiling in the neonatal testis of DIO3-deficient mice identified 5699 differentially expressed genes. Upregulated and downregulated genes were, respectively, involved according to DAVID analysis with cell differentiation and proliferation. They included anti-Müllerian hormone and genes involved in the formation of the blood-testis barrier, which are specific to Sertoli cells (SCs). They also included steroidogenic genes, which are specific to Leydig cells. Comparison with published data sets of genes enriched in SCs and spermatogonia, and responsive to retinoic acid (RA), identified a subset of genes that were regulated similarly by RA and thyroid hormone. This subset of genes showed an expression bias, as they were downregulated when enriched in spermatogonia and upregulated when enriched in SCs. Furthermore, using a genetic approach, we found that DIO3 is not expressed in SCs, but spermatogonia-specific inactivation of DIO3 led to impaired testis growth, reduced SC number, decreased cell proliferation and, especially during neonatal development, altered gene expression specific to somatic cells. These findings indicate that spermatogonial DIO3 protects testicular cells from untimely thyroid hormone signaling and demonstrate a mechanism of cross-talk between somatic and germ cells in the neonatal testis that involves the regulation of thyroid hormone availability and action.


Asunto(s)
Regulación de la Expresión Génica , Yoduro Peroxidasa/deficiencia , Espermatogonias/enzimología , Testículo/enzimología , Hormonas Tiroideas/metabolismo , Animales , Animales Recién Nacidos , Proliferación Celular , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Espermatogénesis , Testículo/crecimiento & desarrollo
11.
Cell Mol Life Sci ; 76(11): 2185-2198, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30729254

RESUMEN

RNA alternative polyadenylation contributes to the complexity of information transfer from genome to phenome, thus amplifying gene function. Here, we report the first X. tropicalis resource with 127,914 alternative polyadenylation (APA) sites derived from embryos and adults. Overall, APA networks play central roles in coordinating the maternal-zygotic transition (MZT) in embryos, sexual dimorphism in adults and longitudinal growth from embryos to adults. APA sites coordinate reprogramming in embryos before the MZT, but developmental events after the MZT due to zygotic genome activation. The APA transcriptomes of young adults are more variable than growing adults and male frog APA transcriptomes are more divergent than females. The APA profiles of young females were similar to embryos before the MZT. Enriched pathways in developing embryos were distinct across the MZT and noticeably segregated from adults. Briefly, our results suggest that the minimal functional units in genomes are alternative transcripts as opposed to genes.


Asunto(s)
Proteínas Anfibias/genética , Genoma , ARN Mensajero/genética , Caracteres Sexuales , Transcriptoma , Xenopus/genética , Proteínas Anfibias/metabolismo , Animales , Embrión no Mamífero , Desarrollo Embrionario , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Masculino , Anotación de Secuencia Molecular , Poliadenilación , ARN Mensajero/metabolismo , Factores Sexuales , Secuenciación del Exoma , Xenopus/crecimiento & desarrollo , Xenopus/metabolismo , Cigoto/crecimiento & desarrollo , Cigoto/metabolismo
13.
Biol Reprod ; 100(2): 547-560, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30247516

RESUMEN

Despite the essential role of the active metabolite of vitamin A, all-trans retinoic acid (atRA) in spermatogenesis, the enzymes, and cellular populations responsible for its synthesis in the postnatal testis remain largely unknown. The aldehyde dehydrogenase 1A (ALDH1A) family of enzymes residing within Sertoli cells is responsible for the synthesis of atRA, driving the first round of spermatogenesis. Those studies also revealed that the atRA required to drive subsequent rounds of spermatogenesis is possibly derived from the ALDH1A enzymes residing within the meiotic and post-meiotic germ cells. Three ALDH1A isozymes (ALDH1A1, ALDH1A2, and ALDH1A3) are present in the testis. Although, ALDH1A1 is expressed in adult Sertoli cells and is suggested to contribute to the atRA required for the pre-meiotic transitions, ALDH1A2 is proposed to be the essential isomer involved in testicular atRA biosynthesis. In this report, we first examine the requirement for ALDH1A2 via the generation and analysis of a conditional Aldh1a2 germ cell knockout and a tamoxifen-induced Aldh1a2 knockout model. We then utilized the pan-ALDH1A inhibitor (WIN 18446) to test the collective contribution of the ALDH1A enzymes to atRA biosynthesis following the first round of spermatogenesis. Collectively, our data provide the first in vivo evidence demonstrating that animals severely deficient in ALDH1A2 postnatally proceed normally through spermatogenesis. Our studies with a pan-ALDH1A inhibitor (WIN 18446) also suggest that an alternative source of atRA biosynthesis independent of the ALDH1A enzymes becomes available to maintain atRA levels for several spermatogenic cycles following an initial atRA injection.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1/metabolismo , Testículo/metabolismo , Tretinoina/metabolismo , Familia de Aldehído Deshidrogenasa 1/genética , Animales , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Genotipo , Isoenzimas , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Oxidación-Reducción , Espermatogonias/efectos de los fármacos , Espermatogonias/metabolismo , Tamoxifeno/farmacología
14.
Cell Res ; 28(9): 879-896, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30061742

RESUMEN

A systematic interrogation of male germ cells is key to complete understanding of molecular mechanisms governing spermatogenesis and the development of new strategies for infertility therapies and male contraception. Here we develop an approach to purify all types of homogeneous spermatogenic cells by combining transgenic labeling and synchronization of the cycle of the seminiferous epithelium, and subsequent single-cell RNA-sequencing. We reveal extensive and previously uncharacterized dynamic processes and molecular signatures in gene expression, as well as specific patterns of alternative splicing, and novel regulators for specific stages of male germ cell development. Our transcriptomics analyses led us to discover discriminative markers for isolating round spermatids at specific stages, and different embryo developmental potentials between early and late stage spermatids, providing evidence that maturation of round spermatids impacts on embryo development. This work provides valuable insights into mammalian spermatogenesis, and a comprehensive resource for future studies towards the complete elucidation of gametogenesis.


Asunto(s)
Análisis de Secuencia de ARN , Análisis de la Célula Individual , Espermatogénesis/genética , Animales , Masculino , Ratones , Ratones Endogámicos
15.
Development ; 145(13)2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29899137

RESUMEN

Spermatogenesis in mammals is a very complex, highly organized process, regulated in part by testosterone and retinoic acid (RA). Much is known about how RA and testosterone signaling pathways independently regulate this process, but there is almost no information regarding whether these two signaling pathways directly interact and whether RA is crucial for steroidogenic cell function. This study uses a transgenic mouse line that expresses a dominant-negative form of RA receptor α (RAR-DN) and the steroidogenic cell-specific Cre mouse line, Cyp17iCre, to generate male mice with steroidogenic cells unable to perform RA signaling. Testes of mutant mice displayed increased apoptosis of pachytene spermatocytes, an increased number of macrophages in the interstitium and a loss of advanced germ cells. Additionally, blocking RA signaling in Leydig cells resulted in increased permeability of the blood-testis barrier, decreased levels of the steroidogenic enzyme cytochrome P450 17a1 and decreased testosterone levels. Surprisingly, the epididymides of the mutant mice also displayed an abnormal phenotype. This study demonstrates that RA signaling is required in steroidogenic cells for their normal function and, thus, for male fertility.


Asunto(s)
Barrera Hematotesticular/metabolismo , Fertilidad/fisiología , Receptor alfa de Ácido Retinoico/metabolismo , Transducción de Señal/fisiología , Espermatocitos/metabolismo , Espermatogénesis/fisiología , Animales , Barrera Hematotesticular/citología , Masculino , Ratones , Ratones Transgénicos , Receptor alfa de Ácido Retinoico/genética , Espermatocitos/citología , Esteroide 17-alfa-Hidroxilasa/genética , Esteroide 17-alfa-Hidroxilasa/metabolismo
16.
Biol Reprod ; 99(1): 87-100, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29462262

RESUMEN

The complex morphology of the Sertoli cells and their interactions with germ cells has been a focus of investigators since they were first described by Enrico Sertoli. In the past 50 years, information on Sertoli cells has transcended morphology alone to become increasingly more focused on molecular questions. The goal of investigators has been to understand the role of the Sertoli cells in spermatogenesis and to apply that information to problems relating to male fertility. Sertoli cells are unique in that they are a nondividing cell population that is active for the reproductive lifetime of the animal and cyclically change morphology and gene expression. The numerous and distinctive junctional complexes and membrane specializations made by Sertoli cells provide a scaffold and environment for germ cell development. The increased focus of investigators on the molecular components and putative functions of testicular cells has resulted primarily from procedures that isolate specific cell types from the testicular milieu. Products of Sertoli cells that influence germ cell development and vice versa have been characterized from cultured cells and from the application of transgenic technologies. Germ cell transplantation has shown that the Sertoli cells respond to cues from germ cells with regard to developmental timing and has furthered a focus on spermatogenic stem cells and the stem cell niche. Very basic and universal features of spermatogenesis such as the cycle of the seminiferous epithelium and the spermatogenic wave are initiated by Sertoli cells and maintained by Sertoli-germ cell cooperation.


Asunto(s)
Fertilidad/fisiología , Células Germinativas/citología , Células de Sertoli/citología , Espermatogénesis/fisiología , Testículo/citología , Animales , Humanos , Masculino , Epitelio Seminífero/citología
17.
Stem Cell Res ; 27: 169-171, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29415862

RESUMEN

The first step in established spermatogenesis is the production of progenitor cells by the stem cell population. The progenitor cells (undifferentiated A spermatogonia) expand in number via the formation of syncytial chains by mitosis. The mechanism by which these progenitor cells commit to meiosis and spermatogenesis is tightly controlled and results in complex morphological organization all of which is designed to efficiently achieve large numbers of spermatozoa. The major extrinsic factor that triggers the commitment to meiosis and establishes the structural complexity is retinoic acid (RA). Retinoic acid is produced from retinol via two oxidation steps in low abundance near its site of action. The action of RA on undifferentiated A spermatogonia results in the timed progression of these progenitor cells into the cycle of the seminiferous epithelium. We have utilized a drug WIN 18,446 that inhibits the second oxidation step in RA biosynthesis to block the progression of undifferentiated A spermatogonia in the mouse testis. As a result of this block the undifferentiated progenitor cells accumulate but do not differentiate into A1 spermatogonia. When the block is released and a bolus of RA is simultaneously administered the accumulated spermatogonia progress through the differentiation pathway in complete synchrony and maintain that synchrony with regard to stages of the cycle of the seminiferous epithelium for several months. This procedure allowed us to accumulate sufficient material to measure retinoic acid levels across the cycle and will allow us to isolate and analyze large number of progenitor cells proceeding synchronously down the pathway to meiosis. We have been able to show that the cycle of the seminiferous epithelium is established and maintained by pulses of RA that appear at stages VIII and IX of the cycle.


Asunto(s)
Espermatogénesis/fisiología , Células Madre/citología , Animales , Masculino , Meiosis/genética , Meiosis/fisiología , Ratones , Espermatogénesis/genética , Células Madre/metabolismo , Tretinoina/metabolismo
18.
Biol Reprod ; 98(5): 722-738, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29408990

RESUMEN

Spermatogenesis in mammals occurs in a very highly organized manner within the seminiferous epithelium regulated by different cell types in the testis. Testosterone produced by Leydig cells regulates blood-testis barrier formation, meiosis, spermiogenesis, and spermiation. However, it is unknown whether Leydig cell function changes with the different stages of the seminiferous epithelium. This study utilized the WIN 18,446 and retinoic acid (RA) treatment regime combined with the RiboTag mouse methodology to synchronize male germ cell development and allow for the in vivo mapping of the Leydig cell translatome across the different stages of one cycle of the seminiferous epithelium. Using microarrays analysis, we identified 11 Leydig cell-enriched genes that were expressed in stage-specific manner such as the glucocorticoid synthesis and transport genes, Cyp21a1 and Serpina6. In addition, there were nine Leydig cell transcripts that change their association with polysomes in correlation with the different stages of the spermatogenic cycle including Egr1. Interestingly, the signal intensity of EGR1 and CYP21 varied among Leydig cells in the adult asynchronous testis. However, testosterone levels across the different stages of germ cell development did not cycle. These data show, for the first time, that Leydig cell gene expression changes in a stage-specific manner during the cycle of the seminiferous epithelium and indicate that a heterogeneous Leydig cell population exists in the adult mouse testis.


Asunto(s)
Células Intersticiales del Testículo/metabolismo , Polirribosomas/metabolismo , Espermatogénesis/fisiología , Testículo/metabolismo , Animales , Barrera Hematotesticular , Expresión Génica , Células Intersticiales del Testículo/citología , Masculino , Ratones , Epitelio Seminífero/citología , Epitelio Seminífero/metabolismo , Esteroide 21-Hidroxilasa/genética , Esteroide 21-Hidroxilasa/metabolismo , Testículo/citología , Transcortina/genética , Transcortina/metabolismo
19.
Dev Biol ; 432(2): 229-236, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29037932

RESUMEN

The onset of spermatogenesis occurs in response to retinoic acid (RA), the active metabolite of vitamin A. However, whether RA plays any role during establishment of the spermatogonial stem cell (SSC) pool is unknown. Because designation of the SSC population and the onset of RA signaling in the testis that induces differentiation have similar timing, this study asked whether RA influenced SSC establishment. Whole mount immunofluorescence and flow cytometric analysis using the Id4-eGfp transgenic reporter mouse line revealed an enrichment for ID4-EGFP+ cells within the testis following inhibition of RA synthesis by WIN 18,446 treatment. Transplantation analyses confirmed a significant increase in the number of SSCs in testes from RA-deficient animals. Conversely, no difference in the ID4-EGFP+ population or change in SSC number were detected following exposure to an excess of RA. Collectively, reduced RA altered the number of SSCs present in the neonatal testis but precocious RA exposure in the neonatal testis did not, suggesting that RA deficiency causes a greater proportion of progenitor undifferentiated spermatogonia to retain their SSC state past the age when the pool is thought to be determined.


Asunto(s)
Espermatogénesis/fisiología , Tretinoina/metabolismo , Células Madre Germinales Adultas/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Transducción de Señal/efectos de los fármacos , Espermatogénesis/genética , Espermatogonias/citología , Testículo/metabolismo
20.
Proc Natl Acad Sci U S A ; 114(28): E5635-E5644, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28630288

RESUMEN

The PIWI-interacting RNA (piRNA) pathway is essential for retrotransposon silencing. In piRNA-deficient mice, L1-overexpressing male germ cells exhibit excessive DNA damage and meiotic defects. It remains unknown whether L1 expression simply highlights piRNA deficiency or actually drives the germ-cell demise. Specifically, the sheer abundance of genomic L1 copies prevents reliable quantification of new insertions. Here, we developed a codon-optimized L1 transgene that is controlled by an endogenous mouse L1 promoter. Importantly, DNA methylation dynamics of a single-copy transgene were indistinguishable from those of endogenous L1s. Analysis of Mov10l1-/- testes established that de novo methylation of the L1 transgene required the intact piRNA pathway. Consistent with loss of DNA methylation and programmed reduction of H3K9me2 at meiotic onset, the transgene showed 1,400-fold increase in RNA expression and consequently 70-fold increase in retrotransposition in postnatal day 14 Mov10l1-/- germ cells compared with the wild-type. Analysis of adult Mov10l1-/- germ-cell fractions indicated a stage-specific increase of retrotransposition in the early meiotic prophase. However, extrapolation of the transgene data to endogenous L1s suggests that it is unlikely insertional mutagenesis alone accounts for the Mov10l1-/- phenotype. Indeed, pharmacological inhibition of reverse transcription did not rescue the meiotic defect. Cumulatively, these results establish the occurrence of productive L1 mobilization in the absence of an intact piRNA pathway but leave open the possibility of processes preceding L1 integration in triggering meiotic checkpoints and germ-cell death. Additionally, our data suggest that many heritable L1 insertions originate from individuals with partially compromised piRNA defense.


Asunto(s)
Meiosis , ARN Interferente Pequeño/metabolismo , Retroelementos , Transgenes , Regiones no Traducidas 5' , Animales , Codón , Metilación de ADN , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Masculino , Metilación , Ratones , Ratones Transgénicos , Sistemas de Lectura Abierta , Fenotipo , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Espermatocitos/metabolismo , Espermatogénesis , Testículo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...