Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 13: 882544, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35707005

RESUMEN

The NO-donor Pentaerytrithyltetranitrate (PETN) has vasodilatative properties and direct protective effects on endothelial cells. We formerly demonstrated that PETN, given to pregnant women during the second and third trimester, influences endothelial dysfunction related pregnancy complications like preeclampsia (PE) and fetal growth restriction (FGR). PETN treatment showed to delay PE to late pregnancy and achieved a profound risk reduction for FGR and/or perinatal death of 40%. The aim of this study was to confirm the effect of PETN on endothelial cell dysfunction at molecular level in an experimental approach. To induce endothelial dysfunction HUVEC were treated with 10 U/l of thrombin in the presence or absence of PETN. qRT-PCR analysis showed that PETN induced the expression of heme-oxygenase-1 and superoxide dismutase two but not endothelial NO-synthase under basal conditions. The induction of antioxidant proteins did not change basal reactive oxygen species (ROS) levels as measured by MitoSOX™ staining. PETN treatment significantly delayed the thrombin-induced disruption of the endothelial monolayer, determined using the xCELLigence® and attenuated the disrupting effect of thrombin on tubular junctions as seen in a tube-forming assay on Matrigel™. In western-blot-analysis we could show that PETN significantly reduced thrombin-induced extracellular signal-regulated kinase activation which correlates with reduction of thrombin-induced ROS. These experimental results establish the concept of how PETN treatment could stabilize endothelial resistance and angiogenic properties in pregnancy-induced stress. Thus, our results underscore the assumption, that the shown clinical effects of PETN are associated to its endothelial cell protection.

2.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806610

RESUMEN

Microglia, the innate immune cells of the CNS, exhibit long-term response changes indicative of innate immune memory (IIM). Our previous studies revealed IIM patterns of microglia with opposing immune phenotypes: trained immunity after a low dose and immune tolerance after a high dose challenge with pathogen-associated molecular patterns (PAMP). Compelling evidence shows that innate immune cells adopt features of IIM via immunometabolic control. However, immunometabolic reprogramming involved in the regulation of IIM in microglia has not been fully addressed. Here, we evaluated the impact of dose-dependent microglial priming with ultra-low (ULP, 1 fg/mL) and high (HP, 100 ng/mL) lipopolysaccharide (LPS) doses on immunometabolic rewiring. Furthermore, we addressed the role of PI3Kγ on immunometabolic control using naïve primary microglia derived from newborn wild-type mice, PI3Kγ-deficient mice and mice carrying a targeted mutation causing loss of lipid kinase activity. We found that ULP-induced IIM triggered an enhancement of oxygen consumption and ATP production. In contrast, HP was followed by suppressed oxygen consumption and glycolytic activity indicative of immune tolerance. PI3Kγ inhibited glycolysis due to modulation of cAMP-dependent pathways. However, no impact of specific PI3Kγ signaling on immunometabolic rewiring due to dose-dependent LPS priming was detected. In conclusion, immunometabolic reprogramming of microglia is involved in IIM in a dose-dependent manner via the glycolytic pathway, oxygen consumption and ATP production: ULP (ultra-low-dose priming) increases it, while HP reduces it.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ib/inmunología , Inmunidad Innata/inmunología , Memoria Inmunológica/inmunología , Adenosina Trifosfato/inmunología , Animales , Glucólisis/inmunología , Tolerancia Inmunológica/inmunología , Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/inmunología , Consumo de Oxígeno/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Transducción de Señal/inmunología
3.
Cells ; 9(3)2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32168879

RESUMEN

AMP-activated protein kinase (AMPK) is activated by vascular endothelial growth factor (VEGF) in endothelial cells and it is significantly involved in VEGF-induced angiogenesis. This study investigates whether the VEGF/AMPK pathway regulates autophagy in endothelial cells and whether this is linked to its pro-angiogenic role. We show that VEGF leads to AMPKα1-dependent phosphorylation of Unc-51-like kinase 1 (ULK1) at its serine residue 556 and to the subsequent phosphorylation of the ULK1 substrate ATG14. This triggers initiation of autophagy as shown by phosphorylation of ATG16L1 and conjugation of the microtubule-associated protein light chain 3B, which indicates autophagosome formation; this is followed by increased autophagic flux measured in the presence of bafilomycin A1 and by reduced expression of the autophagy substrate p62. VEGF-induced autophagy is transient and probably terminated by mechanistic target of rapamycin (mTOR), which is activated by VEGF in a delayed manner. We show that functional autophagy is required for VEGF-induced angiogenesis and may have specific functions in addition to maintaining homeostasis. In line with this, inhibition of autophagy impaired VEGF-mediated formation of the Notch intracellular domain, a critical regulator of angiogenesis. Our study characterizes autophagy induction as a pro-angiogenic function of the VEGF/AMPK pathway and suggests that timely activation of autophagy-initiating pathways may help to initiate angiogenesis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Células Endoteliales/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Autofagia/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Células Endoteliales/citología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosforilación , Transfección
4.
Mol Pharmacol ; 97(3): 212-225, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31871304

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor family, playing pivotal roles in regulating glucose and lipid metabolism as well as inflammation. While characterizing potential PPARγ ligand activity of natural compounds in macrophages, we investigated their influence on the expression of adipophilin [perilipin 2 (PLIN2)], a well-known PPARγ target. To confirm that a compound regulates PLIN2 expression via PPARγ, we performed experiments using the widely used PPARγ antagonist 2-chloro-5-nitro-N-phenylbenzamide (GW9662). Surprisingly, instead of blocking upregulation of PLIN2 expression in THP-1 macrophages, expression was concentration-dependently induced by GW9662 at concentrations and under conditions commonly used. We found that this unexpected upregulation occurs in many human and murine macrophage cell models and also primary cells. Profiling expression of PPAR target genes showed upregulation of several genes involved in lipid uptake, transport, and storage as well as fatty acid synthesis by GW9662. In line with this and with upregulation of PLIN2 protein, GW9662 elevated lipogenesis and increased triglyceride levels. Finally, we identified PPARδ as a mediator of the substantial unexpected effects of GW9662. Our findings show that: 1) the PPARγ antagonist GW9662 unexpectedly activates PPARδ-mediated signaling in macrophages, 2) GW9662 significantly affects lipid metabolism in macrophages, 3) careful validation of experimental conditions and results is required for experiments involving GW9662, and 4) published studies in a context comparable to this work may have reported erroneous results if PPARγ independence was demonstrated using GW9662 only. In light of our findings, certain existing studies might require reinterpretation regarding the role of PPARγ SIGNIFICANCE STATEMENT: Peroxisome proliferator-activated receptors (PPARs) are targets for the treatment of various diseases, as they are key regulators of inflammation as well as lipid and glucose metabolism. Hence, reliable tools to characterize the molecular effects of PPARs are indispensable. We describe profound and unexpected off-target effects of the PPARγ antagonist 2-chloro-5-nitro-N-phenylbenzamide (GW9662) involving PPARδ and in turn affecting macrophage lipid metabolism. Our results question certain existing studies using GW9662 and make better experimental design of future studies necessary.


Asunto(s)
Anilidas/farmacología , Lipogénesis/fisiología , PPAR delta/metabolismo , PPAR gamma/metabolismo , Perilipina-2/biosíntesis , Triglicéridos/metabolismo , Animales , Células Cultivadas , Femenino , Expresión Génica , Humanos , Lipogénesis/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , PPAR delta/antagonistas & inhibidores , PPAR gamma/antagonistas & inhibidores , Perilipina-2/genética , Células RAW 264.7 , Células U937
5.
Front Immunol ; 9: 2818, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30555483

RESUMEN

ß-Glucan derived from cell walls of Candida albicans is a potent immune modulator. It has been shown to induce trained immunity in monocytes via epigenetic and metabolic reprogramming and to protect from lethal sepsis if applied prior to infection. Since ß-glucan-trained monocytes have not been classified within the system of mononuclear phagocytes we analyzed these cells metabolically, phenotypically and functionally with a focus on monocyte-to-macrophage differentiation and compared them with naïve monocytes and other types of monocyte-derived cells such as classically (M1) or alternatively (M2) activated macrophages and monocyte-derived dendritic cells (moDCs). We show that ß-glucan inhibits spontaneous apoptosis of monocytes independent from autocrine or paracrine M-CSF release and stimulates monocyte differentiation into macrophages. ß-Glucan-differentiated macrophages exhibit increased cell size and granularity and enhanced metabolic activity when compared to naïve monocytes. Although ß-glucan-primed cells expressed markers of alternative activation and secreted higher levels of IL-10 after lipopolysaccharide (LPS), their capability to release pro-inflammatory cytokines and to kill bacteria was unaffected. Our data demonstrate that ß-glucan priming induces a population of immune competent long-lived monocyte-derived macrophages that may be involved in immunoregulatory processes.


Asunto(s)
Candida albicans/química , Diferenciación Celular/efectos de los fármacos , Macrófagos/inmunología , Monocitos/inmunología , beta-Glucanos/farmacología , Comunicación Autocrina/efectos de los fármacos , Comunicación Autocrina/inmunología , Diferenciación Celular/inmunología , Humanos , Factor Estimulante de Colonias de Macrófagos/inmunología , Macrófagos/citología , Masculino , Monocitos/citología , Comunicación Paracrina/efectos de los fármacos , Comunicación Paracrina/inmunología , beta-Glucanos/química
6.
Methods Mol Biol ; 1732: 519-537, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29480497

RESUMEN

The role of AMPK in angiogenesis can be studied using in vitro and in vivo assays. The endothelial spheroid assay is a robust three-dimensional in vitro test, which allows investigation of tubular morphogenesis by integrating cell-cell as well as cell-matrix interactions. The Matrigel plug assay validates the process of angiogenesis in vivo and allows studies in genetically modified mice. Here, we give a detailed description of both assays and their application in AMPK research.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Colágeno , Laminina , Neovascularización Fisiológica/fisiología , Proteoglicanos , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Ensayos de Migración Celular/instrumentación , Ensayos de Migración Celular/métodos , Proliferación Celular , Células Cultivadas , Combinación de Medicamentos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Noqueados , Morfogénesis/fisiología , ARN Interferente Pequeño/metabolismo , Esferoides Celulares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...