Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 276(11): 8409-14, 2001 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-11115511

RESUMEN

The precise subcellular localization of ion channels is often necessary to ensure rapid and efficient integration of both intracellular and extracellular signaling events. Recently, we have identified lipid raft association as a novel mechanism for the subcellular sorting of specific voltage-gated K(+) channels to regions of the membrane rich in signaling complexes. Here, we demonstrate isoform-specific targeting of voltage-gated K(+) (Kv) channels to distinct lipid raft populations with the finding that Kv1.5 specifically targets to caveolae. Multiple lines of evidence indicate that Kv1.5 and Kv2.1 exist in distinct raft domains: 1) channel/raft association shows differential sensitivity to increasing concentrations of Triton X-100; 2) unlike Kv2.1, Kv1.5 colocalizes with caveolin on the cell surface and redistributes with caveolin following microtubule disruption; and 3) immunoisolation of caveolae copurifies Kv1.5 channel. Both depletion of cellular cholesterol and inhibition of sphingolipid synthesis alter Kv1.5 channel function by inducing a hyperpolarizing shift in the voltage dependence of activation and inactivation. The differential targeting of Kv channel subtypes to caveolar and noncaveolar rafts within a single membrane represents a unique mechanism of compartmentalization, which may permit isoform-specific modulation of K(+) channel function.


Asunto(s)
Caveolas/química , Microdominios de Membrana/química , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/análisis , Animales , Canal de Potasio Kv1.5 , Ratones , Octoxinol/farmacología , Canales de Potasio/fisiología
2.
J Biol Chem ; 275(11): 7443-6, 2000 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-10713042

RESUMEN

Ion channel targeting within neuronal and muscle membranes is an important determinant of electrical excitability. Recent evidence suggests that there exists within the membrane specialized microdomains commonly referred to as lipid rafts. These domains are enriched in cholesterol and sphingolipids and concentrate a number of signal transduction proteins such as nitric-oxide synthase, ligand-gated receptors, and multiple protein kinases. Here, we demonstrate that the voltage-gated K(+) channel Kv2.1, but not Kv4.2, targets to lipid rafts in both heterologous expression systems and rat brain. The Kv2.1 association with lipid rafts does not appear to involve caveolin. Depletion of cellular cholesterol alters the buoyancy of the Kv2.1 associated rafts and shifts the midpoint of Kv2.1 inactivation by nearly 40 mV without affecting peak current density or channel activation. The differential targeting of Kv channels to lipid rafts represents a novel mechanism both for the subcellular sorting of K(+) channels to regions of the membrane rich in signaling complexes and for modulating channel properties via alterations in lipid content.


Asunto(s)
Caveolinas , Membrana Celular/metabolismo , Lípidos de la Membrana/metabolismo , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/metabolismo , Animales , Encéfalo/metabolismo , Caveolina 1 , Colesterol/metabolismo , Canales de Potasio de Tipo Rectificador Tardío , Proteínas de la Membrana/aislamiento & purificación , Ratones , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Ratas , Canales de Potasio Shab , Canales de Potasio de la Superfamilia Shaker , Canales de Potasio Shal
3.
J Biol Chem ; 274(20): 13928-32, 1999 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-10318802

RESUMEN

The human Kv1.5 potassium channel forms the IKur current in atrial myocytes and is functionally altered by coexpression with Kvbeta subunits. To explore the role of protein kinase A (PKA) phosphorylation in beta-subunit function, we examined the effect of PKA stimulation on Kv1.5 current following coexpression with either Kvbeta1.2 or Kvbeta1.3, both of which coassemble with Kv1.5 and induce fast inactivation. In Xenopus oocytes expressing Kv1.5 and Kvbeta1.3, activation of PKA reduced macroscopic inactivation with an increase in K+ current. Similar results were obtained using HEK 293 cells which lack endogenous K+ channel subunits. These effects did not occur when Kv1.5 was coexpressed with either Kvbeta1.2 or Kvbeta1.3 lacking the amino terminus, suggesting involvement of this region of Kvbeta1.3. Removal of a consensus PKA phosphorylation site on the Kvbeta1.3 NH2 terminus (serine 24), but not alternative sites in either Kvbeta1.3 or Kv1.5, resulted in loss of the functional effects of kinase activation. The effects of phosphorylation appeared to be electrostatic, as replacement of serine 24 with a negatively charged amino acid reduced beta-mediated inactivation, while substitution with a positively charged residue enhanced it. These results indicate that Kvbeta1.3-induced inactivation is reduced by PKA activation, and that phosphorylation of serine 24 in the subunit NH2 terminus is responsible.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular , Secuencia de Consenso , Activación Enzimática , Humanos , Canal de Potasio Kv1.3 , Canal de Potasio Kv1.5 , Mutagénesis Sitio-Dirigida , Oocitos/metabolismo , Fosforilación , Serina/metabolismo , Relación Estructura-Actividad , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...