Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Development ; 147(24)2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33214222

RESUMEN

Understanding how complex organ systems are assembled from simple embryonic tissues is a major challenge. Across the animal kingdom a great diversity of visual organs are initiated by a 'master control gene' called Pax6, which is both necessary and sufficient for eye development. Yet precisely how Pax6 achieves this deeply homologous function is poorly understood. Using the chick as a model organism, we show that vertebrate Pax6 interacts with a pair of morphogen-coding genes, Tgfb2 and Fst, to form a putative Turing network, which we have computationally modelled. Computer simulations suggest that this gene network is sufficient to spontaneously polarise the developing retina, establishing the first organisational axis of the eye and prefiguring its further development. Our findings reveal how retinal self-organisation may be initiated independently of the highly ordered tissue interactions that help to assemble the eye in vivo These results help to explain how stem cell aggregates spontaneously self-organise into functional eye-cups in vitro We anticipate these findings will help to underpin retinal organoid technology, which holds much promise as a platform for disease modelling, drug development and regenerative therapies.


Asunto(s)
Folistatina/genética , Factor de Transcripción PAX6/genética , Retina/crecimiento & desarrollo , Factor de Crecimiento Transformador beta2/genética , Animales , Diferenciación Celular/genética , Pollos/genética , Pollos/crecimiento & desarrollo , Ojo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética
2.
Sci Rep ; 7(1): 6162, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28733657

RESUMEN

During development cell commitment is regulated by inductive signals that are tightly controlled in time and space. In response, cells activate specific programmes, but the transcriptional circuits that maintain cell identity in a changing signalling environment are often poorly understood. Specification of inner ear progenitors is initiated by FGF signalling. Here, we establish the genetic hierarchy downstream of FGF by systematic analysis of many ear factors combined with a network inference approach. We show that FGF rapidly activates a small circuit of transcription factors forming positive feedback loops to stabilise otic progenitor identity. Our predictive network suggests that subsequently, transcriptional repressors ensure the transition of progenitors to mature otic cells, while simultaneously repressing alternative fates. Thus, we reveal the regulatory logic that initiates ear formation and highlight the hierarchical organisation of the otic gene network.


Asunto(s)
Oído Interno/crecimiento & desarrollo , Factores de Crecimiento de Fibroblastos/metabolismo , Perfilación de la Expresión Génica/veterinaria , Redes Reguladoras de Genes , Animales , Embrión de Pollo , Oído Interno/química , Retroalimentación Fisiológica , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal , Factores de Transcripción/genética
3.
Development ; 144(15): 2810-2823, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28684624

RESUMEN

In vertebrates, cranial placodes contribute to all sense organs and sensory ganglia and arise from a common pool of Six1/Eya2+ progenitors. Here we dissect the events that specify ectodermal cells as placode progenitors using newly identified genes upstream of the Six/Eya complex. We show in chick that two different tissues, namely the lateral head mesoderm and the prechordal mesendoderm, gradually induce placode progenitors: cells pass through successive transcriptional states, each identified by distinct factors and controlled by different signals. Both tissues initiate a common transcriptional state but over time impart regional character, with the acquisition of anterior identity dependent on Shh signalling. Using a network inference approach we predict the regulatory relationships among newly identified transcription factors and verify predicted links in knockdown experiments. Based on this analysis we propose a new model for placode progenitor induction, in which the initial induction of a generic transcriptional state precedes regional divergence.


Asunto(s)
Transducción de Señal/fisiología , Vertebrados/embriología , Animales , Comunicación Celular/genética , Comunicación Celular/fisiología , Embrión de Pollo , Pollos , Ectodermo/citología , Ectodermo/embriología , Ectodermo/metabolismo , Electroporación , Ganglios Sensoriales/citología , Ganglios Sensoriales/embriología , Ganglios Sensoriales/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Hibridación in Situ , Análisis de Secuencia por Matrices de Oligonucleótidos , Codorniz , Órganos de los Sentidos/citología , Órganos de los Sentidos/embriología , Órganos de los Sentidos/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vertebrados/metabolismo
4.
Sci Rep ; 6: 20732, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26864723

RESUMEN

Image registration is a gateway technology for Developmental Systems Biology, enabling computational analysis of related datasets within a shared coordinate system. Many registration tools rely on landmarks to ensure that datasets are correctly aligned; yet suitable landmarks are not present in many datasets. Atlas Toolkit is a Fiji/ImageJ plugin collection offering elastic group-wise registration of 3D morphological datasets, guided by segmentation of the interesting morphology. We demonstrate the method by combinatorial mapping of cell signalling events in the developing eyes of chick embryos, and use the integrated datasets to predictively enumerate Gene Regulatory Network states.


Asunto(s)
Proteínas Aviares/genética , Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Imagenología Tridimensional/métodos , Organogénesis/genética , Animales , Atlas como Asunto , Proteínas Aviares/metabolismo , Embrión de Pollo , Conjuntos de Datos como Asunto , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ojo/embriología , Ojo/ultraestructura , Técnica del Anticuerpo Fluorescente , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional/estadística & datos numéricos , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transducción de Señal , Proteínas Smad/genética , Proteínas Smad/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
5.
Proc Natl Acad Sci U S A ; 111(20): 7337-42, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24808138

RESUMEN

In vertebrate embryos, cardiac progenitor cells (CPCs) undergo long-range migration after emerging from the primitive streak during gastrulation. Together with other mesoderm progenitors, they migrate laterally and then toward the ventral midline, where they form the heart. Signals controlling the migration of different progenitor cell populations during gastrulation are poorly understood. Several pathways are involved in the epithelial-to-mesenchymal transition and ingression of mesoderm cells through the primitive streak, including fibroblast growth factors and wingless-type family members (Wnt). Here we focus on early CPC migration and use live video microscopy in chicken embryos to demonstrate a role for bone morphogenetic protein (BMP)/SMA and MAD related (Smad) signaling. We identify an interaction of BMP and Wnt/glycogen synthase kinase 3 beta (GSK3ß) pathways via the differential phosphorylation of Smad1. Increased BMP2 activity altered migration trajectories of prospective cardiac cells and resulted in their lateral displacement and ectopic differentiation, as they failed to reach the ventral midline. Constitutively active BMP receptors or constitutively active Smad1 mimicked this phenotype, suggesting a cell autonomous response. Expression of GSK3ß, which promotes the turnover of active Smad1, rescued the BMP-induced migration phenotype. Conversely, expression of GSK3ß-resistant Smad1 resulted in aberrant CPC migration trajectories. De-repression of GSK3ß by dominant negative Wnt3a restored normal migration patterns in the presence of high BMP activity. The data indicate the convergence of BMP and Wnt pathways on Smad1 during the early migration of prospective cardiac cells. Overall, we reveal molecular mechanisms that contribute to the emerging paradigm of signaling pathway integration in embryo development.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Regulación del Desarrollo de la Expresión Génica , Miocardio/citología , Miocardio/metabolismo , Proteína Smad1/fisiología , Células Madre/citología , Proteína Wnt3A/metabolismo , Animales , Tipificación del Cuerpo , Diferenciación Celular , Movimiento Celular , Embrión de Pollo , Genes Dominantes , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Corazón/embriología , Mesodermo/metabolismo , Fenotipo , Línea Primitiva/metabolismo , Transducción de Señal
6.
Genesis ; 51(5): 296-310, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23174848

RESUMEN

Setting up the body plan during embryonic development requires the coordinated action of many signals and transcriptional regulators in a precise temporal sequence and spatial pattern. The last decades have seen an explosion of information describing the molecular control of many developmental processes. The next challenge is to integrate this information into logic "wiring diagrams" that visualize gene actions and outputs, have predictive power and point to key control nodes. Here, we provide an experimental workflow on how to construct gene regulatory networks using the chick as model system.


Asunto(s)
Pollos/genética , Redes Reguladoras de Genes , Animales , Embrión de Pollo , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica
7.
Dev Biol ; 370(1): 3-23, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22790010

RESUMEN

In the vertebrate head, crucial parts of the sense organs and sensory ganglia develop from special regions, the cranial placodes. Despite their cellular and functional diversity, they arise from a common field of multipotent progenitors and acquire distinct identity later under the influence of local signalling. Here we present the gene regulatory network that summarises our current understanding of how sensory cells are specified, how they become different from other ectodermal derivatives and how they begin to diversify to generate placodes with different identities. This analysis reveals how sequential activation of sets of transcription factors subdivides the ectoderm over time into smaller domains of progenitors for the central nervous system, neural crest, epidermis and sensory placodes. Within this hierarchy the timing of signalling and developmental history of each cell population is of critical importance to determine the ultimate outcome. A reoccurring theme is that local signals set up broad gene expression domains, which are further refined by mutual repression between different transcription factors. The Six and Eya network lies at the heart of sensory progenitor specification. In a positive feedback loop these factors perpetuate their own expression thus stabilising pre-placodal fate, while simultaneously repressing neural and neural crest specific factors. Downstream of the Six and Eya cassette, Pax genes in combination with other factors begin to impart regional identity to placode progenitors. While our review highlights the wealth of information available, it also points to the lack information on the cis-regulatory mechanisms that control placode specification and of how the repeated use of signalling input is integrated.


Asunto(s)
Ganglios Sensoriales/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Redes Reguladoras de Genes/fisiología , Cabeza/inervación , Sistema Nervioso Periférico/embriología , Células Receptoras Sensoriales/fisiología , Vertebrados/embriología , Animales , Diferenciación Celular/fisiología , Ectodermo/fisiología , Cabeza/embriología , Modelos Biológicos , Células-Madre Neurales/citología , Factores de Transcripción/metabolismo
8.
Nat Commun ; 2: 265, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21468017

RESUMEN

In vertebrates, the lens and retina arise from different embryonic tissues raising the question of how they are aligned to form a functional eye. Neural crest cells are crucial for this process: in their absence, ectopic lenses develop far from the retina. Here we show, using the chick as a model system, that neural crest-derived transforming growth factor-ßs activate both Smad3 and canonical Wnt signalling in the adjacent ectoderm to position the lens next to the retina. They do so by controlling Pax6 activity: although Smad3 may inhibit Pax6 protein function, its sustained downregulation requires transcriptional repression by Wnt-initiated ß-catenin. We propose that the same neural crest-dependent signalling mechanism is used repeatedly to integrate different components of the eye and suggest a general role for the neural crest in coordinating central and peripheral parts of the sensory nervous system.


Asunto(s)
Ojo/metabolismo , Cresta Neural/metabolismo , Transducción de Señal , Proteínas de la Superfamilia TGF-beta/metabolismo , Proteína wnt2/metabolismo , Animales , Embrión de Pollo , Pollos , Ojo/citología , Ojo/embriología , Cristalino/embriología , Cristalino/metabolismo , Modelos Biológicos , Cresta Neural/citología , Cresta Neural/embriología , Proteína smad3/genética , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteína wnt2/genética
9.
Dev Biol ; 345(2): 180-90, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20643116

RESUMEN

Crucial components of the vertebrate eye, ear and nose develop from discrete patches of surface epithelium, called placodes, which fold into spheroids and undergo complex morphogenesis. Little is known about how the changes in cell and tissue shapes are coordinated with the acquisition of cell fates. Here we explore whether these processes are regulated by common transcriptional mechanisms in the developing ear. After specification, inner ear precursors elongate to form the placode, which invaginates and is transformed into the complex structure of the adult ear. We show that the transcription factor Pax2 plays a key role in coordinating otic fate and placode morphogenesis, but appears to regulate each process independently. In the absence of Pax2, otic progenitors not only lose otic marker expression, but also fail to elongate due to the loss of apically localised N-cadherin and N-CAM. In the absence of either N-cadherin or N-CAM otic cells lose apical cell-cell contact and their epithelial shape. While misexpression of Pax2 leads to ectopic activation of both adhesion molecules, it is not sufficient to confer otic identity. These observations suggest that Pax2 controls cell shape independently from cell identity and thus acts as coordinator for these processes.


Asunto(s)
Oído Interno/embriología , Factor de Transcripción PAX2/fisiología , Animales , Cadherinas/genética , Cadherinas/metabolismo , Diferenciación Celular , Embrión de Pollo , Epitelio/embriología , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación in Situ , Ratones , Morfogénesis , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX2/metabolismo
10.
Crit Rev Biochem Mol Biol ; 43(6): 371-91, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19016056

RESUMEN

The mammalian Pax gene family encode a set of paired-domain transcription factors which play essential roles in regulating proliferation, differentiation, apoptosis, cell migration, and stem-cell maintenance. Pax gene expression is necessarily tightly controlled and is associated with the demarcation of boundaries during tissue development and specification. Auto- and inter-regulation are mechanisms frequently employed to achieve precise control of Pax expression domains in a variety of tissues including the eye, central nervous system, kidney, pancreas, skeletal system, muscle, tooth, and thymus. Furthermore, aberrant Pax expression is linked to several diseases and causally associated with certain tumors. An increasing number of studies also relate patterns of Pax expression to signaling by members of the TGFbeta superfamily and, in some instances, this is due to disruption of Pax gene auto-regulation. Here, we review the current evidence highlighting functional and mechanistic overlap between TGFbeta signaling and Pax-mediated gene transcription. We conclude that self-regulation of Pax gene expression coupled with modulation by the TGFbeta superfamily represents a signaling axis that is frequently employed during development and disease to drive normal tissue growth, differentiation and homeostasis.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción Paired Box/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Humanos , Proteínas Smad/metabolismo , Transcripción Genética
11.
Nucleic Acids Res ; 35(3): 890-901, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17251190

RESUMEN

Pax6 transcription is under the control of two main promoters (P0 and P1), and these are autoregulated by Pax6. Additionally, Pax6 expression is under the control of the TGFbeta superfamily, although the precise mechanisms of such regulation are not understood. The effect of TGFbeta on Pax6 expression was studied in the FHL124 lens epithelial cell line and was found to cause up to a 50% reduction in Pax6 mRNA levels within 24 h. Analysis of luciferase reporters showed that Pax6 autoregulation of the P1 promoter, and its induction of a synthetic promoter encoding six paired domain-binding sites, were significantly repressed by both an activated TGFbeta receptor and TGFbeta ligand stimulation. Subsequently, a novel Pax6 binding site in P1 was shown to be necessary for autoregulation, indicating a direct influence of Pax6 protein on P1. In transfected cells, and endogenously in FHL124 cells, Pax6 co-immunoprecipitated with Smad3 following TGFbeta receptor activation, while in GST pull-down experiments, the MH1 domain of Smad3 was observed binding the RED sub-domain of the Pax6 paired domain. Finally, in DNA adsorption assays, activated Smad3 inhibited Pax6 from binding the consensus paired domain recognition sequence. We hypothesize that the Pax6 autoregulatory loop is targeted for repression by the TGFbeta/Smad pathway, and conclude that this involves diminished paired domain DNA-binding function resulting from a ligand-dependant interaction between Pax6 and Smad3.


Asunto(s)
Proteínas del Ojo/genética , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Factores de Transcripción Paired Box/genética , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteína smad3/metabolismo , Secuencia de Bases , Sitios de Unión , Línea Celular , ADN/metabolismo , Proteínas del Ojo/química , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/química , Proteínas de Homeodominio/metabolismo , Homeostasis , Humanos , Datos de Secuencia Molecular , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/química , Factores de Transcripción Paired Box/metabolismo , Estructura Terciaria de Proteína , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Proteínas Smad/metabolismo , Proteína smad3/química , Transcripción Genética/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología
12.
Dev Dyn ; 231(1): 214-20, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15305302

RESUMEN

Matrix metalloproteinases (MMPs) are a large family of proteins in vertebrates, consisting of over 24 genes in humans, only a few of which have been identified in Xenopus. Three genes coding for MMPs in Xenopus have been identified and their expression studied during development. The membrane-bound XMMP-14 and -15 (XMT1-MMP and XMT2-MMP) both showed restricted expression patterns, the former principally localising to cranial neural crest tissues and the latter to the epidermis of the embryo. XMMP-7 codes for an MMP that lacks the hemopexin-like domain. It is expressed exclusively in macrophages or other myeloid cell types from early in development.


Asunto(s)
Biología Computacional , Metaloproteinasas de la Matriz/metabolismo , Filogenia , Xenopus/embriología , Secuencia de Aminoácidos , Animales , Clonación Molecular/métodos , Embrión no Mamífero/metabolismo , Metaloproteinasas de la Matriz/genética , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Xenopus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA